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ABSTRACT

This report deals with two of the most difficult problems in the synthesis

of the sequential switching circuits: the problem of simplifying the flow tables of

completely and incompletely specified switching functions; and the problem of assign-

ing the secondary variables to the different states of the circuit.

A graphical method is developed for the reduction of the number of states

in the sequential machine. The method simplifies the techniques of finding the

closed sets of compatibles which from the new set of states of the reduced machine.

The last chapter includes further development of existing methods for the

secondary assignment for both synchronous and asynchronous sequential machines.

A discussion is also given on the decomposition of sequential machines and its

relations to the secondary assignment.
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I. INTRODUCTION

The analysis and synthesis of sequential machines is a branch of switching

theory.

A sequential machine is one which contains some memory devices. In the

type of combinational circuits, each combination of input variables Pi results in a

corresponding output Zi, the order in which the combination occured or the past

combinations do not influence the result.

In the sequential machines the outputs depend on the input-combination and

on the present state of the machine. The "present state" (P.S.) of sequential

machine is determined by the states of the internal memory elements, which depend

on the past history of the machine and on the order of the input combinations.

For a given combination of input variables the output is not unique, it depends

on the sequence in which the input variables occur.

In general the block diagram of a sequential circuit is:

COMBINATIONAL OUTPUTCIRCUIT OTU

-- I IPUT

In the synchronous circuits there is an additional clock-pulse which controls all

transitions between states. The major part of the thesis is concerned with the

synthesis of sequential machines, because the analysis is not entirely obvious but

on the whole self-explanatory. The most difficult part of the analysis is simplifying

the equations of the circuit, however this is already a part of the systhesis of the

sequential machines .

The machines consist of primary relays (or electronic devices) which are all

under the immediate control of the input variables. On the other hand, the control

network of the secondary elements depends on the change of the input variables and

the state of the primary elements. (In Chapter V some methods to reduce this depend-

ency were described.)



Given a network, the analysis procedure is to find the tie sets which give
transmission 1 to the memory elements and to the outp~uts.

Cons ider the following network

xx

*Z2

I K 1 Y 2  I1 y

YI= XZ l + y3i) * x I2 Y 2 3

Y2= Xx2 y1

ZZ 1 2 Y3
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By writing these equations we finished with the analysis of the network, however

in order to have a better understanding of the operation of the machine we have to

simplify these equations (if possible). The simplification procedure is the main

subject of this thesis.

The sequential machine is usually described by a matrix which is called
m flowr table •.

In this thesis we used the flow tables of Huffman2 , Mealy 3 , Moore 4 , etc.

The main idea in all methods is the same, however there are several differences

which will be described as follows.

Mealy's model

Input Combination I1 .. In  2' n

Present State Next State Output Combination

S1  SII1 12 " S1n Z11 *....... Z1
12 S 2S .... S n **es~Zn

S 2  $21 $22 ... S2n Z21...69... 5Z2n

SZSZ....Z

Sm Sml ....... Smn Zml zm 2  z mn

Let I ={I 1 I2 .... InI be a set of inputs,

Z {Zll Zl ..... Zn.... Zmn}

is a set of outputs.

The left-hand column of the flow table (or as Mealy called it truth table)

indicates the present state of the machine and the entries of the table give the

corresponding next state to which the machine goes after Ik was applied. For example,

if the machine was in present state S. and In is applied the machine goe to next state

SZn and the corresponding output is Zzn.

Moore's model

Moore and Huffman associate each output with a present state of the machine

and not with the transition from one state to the other.
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Inputs

P.S. I 1 I? ..... I Output
I n

S 1  Sil S12 .... Siln Z1 I

S2 S21 S2n Z2

S S. ..
Z

m ml mn m

Let S ={l S2 ... Sm~be a set of internal states of the machine MI let 1= {Il...In}
be a set of inputs , and Z = {Z 1 ... Zm} be the set of outputs which corresponds

to S.

The flow-table of Huffman is described in Chapter II. Paul & Unger 1 0 made
minor changes in Mealy's model, however I changed the notation to Mealy's notation

in the examples that were taken from their paper.

Chapter II of the thesis is mainly a review of some known design methods.
However it is emphasizes what are the achievements of each of the methods described

and what are the limitations.

Chapter III developes _ new methods for the simplification of incompletely
specified flow tables and for finding the closed set of compatibles.

Chapter IV deals with the synchronous circuits and Chapter V with the
problem of the secondary assignment.

The thesis includes many examples, some of them taken from the references
(with some minor changes), the rest are original.

An attempt has been done to solve some of the problems involved in the

syntheuising of sequential machines, however, even though the main problems are

still unsolved they were pointed out and presented.



II. REVIEW OF SOME DESIGN METHODS

A. Huffman's Method.

This method presented by Huffman in 1953-54 is good for asynchronous circuit.

The technique of synthesising sequential machines consists of the following steps:

1. Description of the machine.

Z. Rewriting the description in a form called Primitive Flow Table. (P. F. T.)

3. Eliminating equivalent states in the P. F. T.

4. Drawing of a merger diagram in order to get the Reduced Flow Table.
(R. F. T. )

5. Assigning the secondary states in order to represent the rows of the R.F.T.

6. Writing the exitation and output matrices which turn the sequential problem
into a combinational one.

The method will be illustrated by several examples which will emphasis the

process through all steps.

Ex. 2.1

At a junction of a one-line railroad and a street, traffic lights are needed.

The lights will be controlled by the trains. When the train is 1500 feet from the

intersection, the lights have to change from green to red until the train is 1500 ft.

after the intersection.

STREET

RAILROAD

A B

At the points A and B (each of which is 1500 ft. from the junction) we shall put two

contacts which will form the input contacts of the circuit.

If we give decimal weight to the contacts A z I B = 2, we can describe the

same system in a numerical method.

X 1 0 0 010 10 00 0 l0i0 z 01
z 10 1 1 1010 1 11 0 1 1I00 11 101
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X - is the input contact.

Z - is the output ( Z = 1 means red light on, Z = 0 - red light off).

The explanation to this description is simple; the initial state is X = 0 (no

train near the junction) Z = 0. Next state, a train approaches the junction from the

left; switch A is pressed (A = 1), and red light is on - Z = 1. The third state is after

the train leaves point A but didn t t yet arrive to point B - no switch is pressed, but
red light is still on. In state 4, switch B is pressed, the lights are still on till the

fifth state which is equal to the first one. The third sequence is equivalent to the

first one. The second and fourth sequences take in account a case when the train

pressed switch A or B, but before pressing switch B (or A), it backs to the same

direction from which it has just come.

This problem is not a practical solution for traffic lights, it is just an

example of synthesising sequential switching circuits.

The numerical description of the problem is not used by Huffman, 3nd it is

not always necessary to use it, but in most cases it simplifies the procedure of

writing the flow table.

Step 2.

BA

0 000111 3 1 201

Q 2 - 6 0

5 - 4 1

1 - - i

3 " - 0 1

The numbers 0, 1, 2, 3 are the decimal weight of 00, 01, 10. 11. Column 3 is not

specified because switches A and B can never be pressed together. (Assuming the

length of the train never exceeds 3000 ft.).

The P. F. T. follows directly from the numerical description of the problem.

0is the initial state x - 0 Z = 0 fromx= 0 we move to x = Z = 1 (state ®).
The 2 indicates an unstable state, which occurs immediately after pressing switch A,

but before the internal element changed. The 2 becomes stable when it moves

vertically to v *

In the same manner the whole table is filled.
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Step 3.

The conditions for equivalency of rows are as follows.

Two rows are equivalent if their outputs are the same (or "are not in

contradiction" in case that Z is not completely specified), and there is no contradiction

between their internal entries. The rows are numbered correspondingly to the stable

states.

Therefore in our example there are no equivalent states because 0 and®

and - have 1, 3 as unstable states, but 1, 3 have different outputs; therefore,

they are not equivalent.

Step 4.

An array of points is drawn to correspond with the states in the P. F. T.

(After rule 3 was applied on it.) Rows may be merged if there is no contradiction

between their entries.

4

The statesa that form the R.F. T. are (1) (2, 6) (3) (4, 5)

B A
0 0 0 1 111 10

a (D 2 - 6

c 5 4

OO 101 I Q]I

Steps 5,6 will be discussed in general in Chapter V. The results however are:

0 0 -*a

0 1 -*b

1 1-sc

1 0 -*d



The exitation matrix is

00 01 11 .10

00 00 01 - 0 Y 1 
2  (XI +x 2 )+y l x+ x

01 11 01 - 01

11 1 1 1 0 - 10 Y 2 SY 2  (x 2 )+ Y 1 2 1

10 00 10 - 10

The output matrix is written from the P. F. T.

Z I 1 for states 2, 3, 4, 5, 6.

Y21

y 1  0 00 111 1101
00 0 - -

01 - 1 - 1
II 1 - - , + 2

10 1 1

Ex. 2. .

A two inputs, two outputs, sequential circuit has the following properties:

1. The inputs variables are to change one at a time.

2. After any change of the input state the output is always either the initial

input state or the final output state.

3. When the input states are represented in binary form, an input change

which increases the decimal value of the binary input causes an output of

either 0 0 or 1 1. If the decimal value decreases, the output is either

0 1 or 1 0.

This problem will be best illustrated by the following numerical description.

P. S. N. S. Output

1 0 0 01 00 P.S. - Present State

2 00 10 00 N.S. - Nxt State

3 01 00 01

4 01 11 1I

5 11 01 01

6 11 10 10

7 10 00 10

8 10 1I 11
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Each input state has only two ways to change, therefore under column P.S. each

state is written twice. In column N. S. the corresponding changes are written and

in the third column the corresponding output is given. For example 0 l(decimal value

one) can change to 0 0 or 1 1. A change to 0 0 decreases the decimal value from one

to zero hence the output may be 0 1 or 1 0, but as the input was 0 1, the output

according to property- 2 is 0 1. A change to 1 1 increases the decimal value to three

hence the output may be either 0 0 or 1 1, as the final output state is 1 1, the output is

1 1. The flow table can be derived directly by noticing that each input state has t'M

different stable states. A check for equivalent rows will result in combining rows

4 and 8 as both are in the same state 11 and their output is the same 1 1.

x21 21

0 1 11 10

(D 3 - 6 01
(, 3 - 6 10

1 5 0 0

1 5 - 01

- 4 7D 1 1

2 5 0 0

2 1 0

The rmerging diagram is

7 2

6

5 4

The solution may be:

(1, 3) (2,6) (4, 5) (7)
or

(1,3) (2.6) (4) (5, 7)
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The corresponding R. F. T. are:

I@@ 10 5

There is no way to determine which flow table is better to realize, therefore, an

arbitrary choice is done to realize the first flow table.

From the R. F. T. we have to find the exitation matrix, hence to assign the

secondary states. In order to assign the secondary states to the states of the flow

table let us rewrite the R. F.T. in such a way that each unstable state will be adjacent

to the corresponding stable state, assuming that the R. F. T. is a map of Karnaugh.

3 5

A check of the R. F. T. shows that the unstable state 5 in the second row-third

column is not near its stable state@; in this case we have a race condition. The

problem of races is explained widely in Chapter V, and as this race is not critical,

we shall leave it without any further explanation.

The transition and output matrices are:
output

x 2XI x2 x 1

00 01 11 10 00 01 .11 10

00 00 00 10 01 00 01 00 10 0 1

01 01 00 10 01 01 10 10 10 00

11 01 - 10 11 11 10 10 10 10

10 00 10 10 11 10 01 01 11 01

While assigning the unstable entries to the output matrix, we assume that the response

time of the network to the output signals is long enough, compared to the duration of

the unstable states. Therefore, we assign the entries in such t way that the output

network will be as simple as possible.

Y1 = x2 x I 
+ ylxl 1  x2(x 1 

+  yi)

Y 2 = x 1x 2 + x 2Y2 + xl1Y2 , x2 (Xi + YZ ) + xlYZ

1= l i +1 = 7i (xl +I-)

Z Z iz Yl + XlXZ + YlyZ " Yl (12.+ YZ) + XXz
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Ex. 2. 3

Find a It. F. T. for the following flow table.

00 01 11 10 Z 1 Z 2

8 z 7 (D 1 0
4 ® 7 6 1-
8 1 ; 1 0 -

9 7 6 0 0

4 ( 3 6 1 1

8 5 3 - 0

8 5 1 - 1

@ z 7 6 0 0

8 & 7 6 1 0

A brief search will indicate that 4 and 8 will be equivalent if 2 and 9 are;

2 and 9 will be if 4 and 8 are; therefore, as they depend on each other, they can form

two equivalent sets (4, 8) (Z, 9).

At this point it is worthwhile to note that according to Huffman t s method once a

set of rows is combined, its output is fixed; hence the output of row No. Z becomes

10 as the output of row No. 9. From this we conclude that row 5 cannot be combined

with any other row. Rows 3, 7 depend on the equivalence of 2 & 5; hence they cannot

be combined, same for rows 1, 6.

The new flow table will have 7 rows:

(1) (2, 9) (3) (4, 8) (5) (6) (7)

However one can see that the set of rows

(1,6) (2, 5) (3,7) (4) (8) (9)

is also a solution for this problem. From this example we notice that the first

assignment 2 z 9 enabled us to find the minimal solution.

Ex. 2.4

Given the following flow table:
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00 01 11 10 Z

2 2 7 8 0-

3 - 6 11

® 2 4 8 0 1
- -0- 1 -

@ 2 7 6 - 0
5 - - ( 01

1 - 7 8 - 0

1 9 - ( ) - 1

- -~.10 1 1

1 2 -

In order to reduce this flow table according to Huffman's method, we have

to find redundant stable states by checking all states which belong to the same input

conditions ( i.e., that are in the same column). Qandnmay be equivalent iLf®and®

are. Gand(are equivalent. Qand~cannot be equivalent because they contradict

in their output. (The output ofafter merging it with statelis now 01.)

0and(are equivalent if~and 60 are. @and 3- f(and(5 are, hence they

cannot be combined. The following flow table cannot be reduced anymore.

00 01 11 10 Z

( 2 4 8 01
I ,I - 6 11

1 - @ 8 10

2 4 6 -0

5 - - 0 01

1 9 - --

- ( - 10 1
1 Z - o-

The merger diagram is:
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t2

90 4

6

The merged flow table consists of 6 states (1) (2) (4, 8) (5, 6) (9) (10) which require

3 memory elements.

However the combining of statesand U was not a good decision as is shown

in the following flow table.

Assuming(iDand(are not combined we get:

Oandoare equivalent ifland(are. @and(if( and@; hence both pairs may

be combined. In the same manner we get that(Jand(j n @(nc3(iLndI are

equivalent and the reduced flow table is:

00 01 11 10 z

2 4 6 0 0
3 - 6 1 1
(i 2 4 6 0 1
1 - ® 6 1 0

1 2 - 0 1

This flow table consists of 5 states instead of the 8 states we received after

combining1and(j

The merger diagram is:
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'6

4,

(1, 4.6) A (2, 3) B

B B [B ]A[ A

The exitation matrix is

yxl 00 01 11 10

0 0 1 0 0

Y Ixl + 
2 Y i 2 (xl + Y)

The output matrix assuming unstable states as"don't cares" is:

01x 111
y 10 0 01 111 0

Z 1  y+x 2 x 1

Zz x I
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This solution required only 1 memory element instead of the 3 in the previous

reduction. We conclude that one has to be very careful when he decides which

rows are to be combined. An unsuccessful choice will result in a flow table which

cannot be reduced any more but in far from the optimal solution.
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B. The Methods of Moore and Mealy

Moore 4 and Mealy 3 in 1955 developed new similar methods for synthesising

sequential machines. Both methods were developed specially for synchronous

machines, however they hold for asynchronous machines too.

The basic idea of the method is given in this chapter; additional examples and

explanations are given in chapter IV.

Both methods use the state diagram (Moore called it "transition diagram")
in order to illustrate the operation of the machine. The state diagram is a graph

that represents the transition from one state to the other and the flow of

information through the machine.

Moore follows the representation of Huffman where the outputs are determined
by the states of the machine, while Mealy associates the outputs with the inputs to

the machine in each of its states.

As an example consider the following state diagram.

0/0

I/0

0/I 1/0

0/0

0
0/0

I/0

1II

3 1/0

0/0

Each node represents a state of the machine; each line represents the

transition between the states. Each line is marked to show what input change

causes the transition and what is the output response. The arrow indicates the

direction of the transition.

The symbol a /b means that the input to the state is "a" and the output

is "b" . For example 0/1 means that a zero input causes an output of 1 •
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This machine can be represented by the methods of Moore or Huffman, but

it requires seven states instead of five. States 1 and 3 must be subdivided into la

lb and 3a 3b each of which corresponds to a different output position.

la , 3a corresponds to output of 1 . 0, 2, 4 ,lb, 3b corresponds to an

output of 0

01

Z=1

0.I

In general, each state in the model of Mealy, the inputs of which "carry"

different ouputs, must be subdivided into subsets, each of which corresponds to one

output.

The number of substates of each state is equal to the number of different

outputs. For example, the inputs to state 0 are 0 and 1 from states 2 and 4.

The outputs that correspond to these inputs are always 0; hence state 0 has one

substate that is identical to the state itself.

0 0

But state 1 has as inputs 0/0 /; hence we need 2 substates - one for

the position Z =1 and the other for Z = 0 • The transition lines must be drawn
again to correspond to the new states.

As a conclusion, we can see that the method of Moore is similar to that of

Huffman - when dealing with asynchronous circuits - therefore we shal ephasise

the method of Milealy.

In order to determine state equivalency we separate the states into sets
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which have the same input - output relations.

States which belong to the same set may be equivalent; states which do not belong

to the same set may not be equivalent. Afterwards a check is made to determine

whether the transition lines from each set can be merged.

As an example we check the previous state diagram, and we notice that

states 1, 2, 3, 4 have the same input - output relations, (i.e. 0/0 l/0 ) . The

two sets are therefore:

(0) . (1, 2, 3, 4)

A check for x = 0 is applied to the machine. The results are that from

states 2 and 4 the machine goes to state 0 , while from states 1 and 3 the machine

does not go anywhere.

Hence we have to subdivide (1 , 2, 3, 4) into (1, 3) and (2,4). If I is

applied to states I or 3, the machine goes to the set (2.4) and from which, by

applying either 0 or 1, it goes to state 0

The final solution is:

A = (0) B = (1,3) C = (2,4)

The reduced state diagram is

S0/0

0.1/0

The state diagram is a graphical way to show the operation of the machine.

Same results we could have received from the corresponding flow table.

P.S. N.S Output

0 1 0

0 1 3 1 1

1 1 2 0 0

2 0 0 0 0

3 3 4 0 0
4 0 0 0 0
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This flow table suggested by Mealy can be reduced to the following flow table which

corresponds to the reduced state diagram as found before.

P.S. N.S. Output

0 1 0 1

A=O B B 1 1

B=l, 3 B C 0 0

C=2,4 A A 0 0

The rules for simplifying flow tables are as follows:

Two states of a machine are said to be equivalent if and only if there is no

experiment which can be performed on the machine that will give different output

results if the machine was initially in either state.

In other words two states of a machine are equivalent if their outputs do

not contradict and a change of any input in both states will cause the machine to

move to a common next state. In our example, there is no experiment that can be

performed on the machine which will distinguish between state 1 and 3 or 2 and

4 , and their outputs are the same.

Ex. 2.5

Given the following state diagram:

0/0
It0

0/

I/0

456
I/O

0/0
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The corresponding flow table is:

P.S. N.S. Output
0 1 0 1

1 4 2 0 1

2 5 3 0 0

3 4 2 0 0

4 1 5 0 1

5 2 6 0 0

6 1 5 0 0

A grouping of the states according to their outputs will result in

(1,4) (2, 3,5,6)

Set (2, 3, 5,6) implies - when applying to it 0 input - the set (5, 4, 2, 1)

but (5, 2) cannot be merged with (4,1) because of different outputs. Therefore, we

have to sub-divide this set and we obtain:

(1,4) (2,5) (3,6)

A check shows that these sub sets can form a closed set.

A: z1.4) 8:(2.5) C (3.6

0

The reduced flow table is:

P.S. W.S. Output

0 1 0 1

A A B 0 1

B B C 0 0

C A B 0 0
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The correspond state diagram is:

0

1/0

I/O

0/0

In the end of Chapter II. A several examples were given to show that the

reduction method of Huffman is not sufficient when the flow tables are not completely

specified. Same disadvantage applies to the methods of Moore and Mealy as will be

shown in the following examples.

Ex.2. 6

Given the following flow table:

P.S. N.S. Output

IMP-- 00 01 11 10 00 01 11 10

1 1 5 - 1 00 01 - 01

2 - 3 2 4 - 10 00 11

3 1 3 - - 00 10 - -

4 1 - - 4 00 - - 11
5 - 5 6 - - 01 00 -

6 - 7 6 7 - 10 00 11

7 1 - - 7 00 - - 11

According to the rules of Mealey, states, the outputs of which are not

contradictory, are candidates for equivalency.

This rule can be applied to the sets:

(1,5) (4,7) (2,3,6)

(2, 3, 6) implies (3, 7) , but (3, 7) is not in any set; therefore, we have to

divide (2, 3,6) into (2, 3) (6)



The closed set is therefore:

A = (1,5) B = (4,7) C = (2,3) D = (6)

P.S. N.S. Output

00 01 11 10 00 01 11 10

A A A D A 00 01 00 01

B A - - B 00 01 00 11

C A C C B 00 10 00 11

D - B D B - 10 00 11

This flow table cannot be reduced anymore. It requires at least two secondary

variable s.

In the next chapter, ex. 3.7 and 2. 9 , we shall show that the same flow

table can be reduced to two states and only one secondary variable.

Ex. 2.7 Given the following flow table:

XI  x x3 x1 xa x 3

1 3 5 - 0 1 -

2 3 5 - 0 .

3 2 3 1 - 0 -

4 2 3 5 0 -

5 - , 5 1 0 0 o

According to Huffman' s or Mealy' s methods, rows 1 and 2 are equivalent; there-

fore, we can immidiately combine them.

1-2 3 5 - 0 1 -

3 2 3 2 - 0 -

4 2 3 5 0 - -

5 1 - 1 5 2 11 - 1 0 -

Row 2 can be combined with 4 if 2 and 3 are equivalent, but 2-3
contradict in their outputs hence row 2 cannot be combined with any other row.

Row 3-4 depend on 2-5, hence they are not equivalent.

Finally we find that rows 3 and 5 are equivalent and the result is:

1-2 3 3 - 0 1 -

3-5 2 3 2 - 0 -

4 2 3 3 0 - -

To realize this R. F. T. we need 2 memory elements. But if we would not

have combined rows I and 2 in the beginning a solution that requires only 1 memory
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element could have been found.

A=l1.4 A B BB 0 1

B=2.3.5 BIB B 0 -

The disadvantage of these methods is in the fact that once two rows have
been merged, the unspecified entries are assigned in such a way that is not

always optimal. The methods of Mealy, Moore or Huffman holds for completely
specified flow table, however their techniques for reducing incompletely specified

flow tables is in general unsatisfactory. A method for reducing flow tables of

incompletely specified sequential switching circuits was developed by Paull and
10Unger

Another method which holds for completely and incompletely specified

sequential machines is developed in chapter II•
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C. The Method of Paull and Unger

As shown in several previous examples the results received by the methods

of Mealy and Huffman were insufficient in cases where the flow table was not
10.

completely specified. Paull and Unger in their paper developed a technique to

minimize the number of states in incompletely specified sequential switching

circuits. In order to explain the method some of the main definitions and theorems

are given as follows:

A grouping of all the rows of a flow table into c sets will be said to be

closed, if every set implied by any c. is included in one of the c sets. "A1

compatible is a set of states of a flow table that constitutes one member of some

closed grouping" i.e. states that do not contradict in their outputs may form a

compatible if the corresponding entries belong to any set of states in the flow table.

A set of states is a compatible if, and only if every pair of states in that set is a

compatible. (i.e. (1,2, 3) are compatible only if (1, 2) (2, 3) and (1, 3) are

compatible.

According to this method one must find all possible Mc' a from which we may

choose the lower bound of compatibles that will form the R. F. T. After choosing the

lower bound of the compatibles a test for closure is done.. If the set of compatibles

is closed the R. F. T. can be constructed. If it is not closed tests for closure are

done after adding more compatibles to the set.

The procedure of finding the compatibles is carried out in an "implication

table" as illustrated in the following example.

P.S. N. S. Output

Inp - 00 01 11 10 00 01 11 10

1 - 3 5 2 - 1 1 1

2 5 - - - 0 - - -
3 6 6 - - 0 1 - -

Flow table.
4 - - 2 - - - 1 -

5 - 6 1 4 - 0 0 1

6 13 - 2 3 0 - 0 1

2 V

3 36 56

4 25 V Implication table.
5 X V -X X

6 X 35X V X 34

1 2 3 4 5
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In the implication table each square corresponds to a pair of states in the

flow table.

The filling of the implication table is as follows: If for row-pair ab,

the outputs are not contradictory then enter all row pairs implied by ab in the

ab square. (Square (13) (14) etc. in our example); . If'no pairs are to be entered
a check mark is inserted. (Square (12) (24) etc. ) If the outputs of rows ab

contradict an X is placed in the corresponding square. (cells (15) (16) etc.)

After the table is filled a check is done if there is no contradiction to the

entries of the table. The check in quare (13) which has the entries (36) shows that

(36) are checked, therefore we consider cell (13) as a checked cell. A test of the

entries of cell (26) shows that the entries (35) are crossed in the square (35),

therefore an X is placed in cell (26) and the cell is ignored as if it was a "crossed"

cell.

The highest order MC is in column 1 (123456) , but (15) and (16) contradict

therefore we divide this compatible to two compatibles,

(1234) (23456) .

A check in colum 2 shows that (26) contradict, therefore we divide the
second compatible and we obtain:

(1234) (2345) (3456)

In column3 we observe that (35) contradict and we get:

(1234) (234) (245) (346) (456)

As the second compatible is included in the first we ignore it. From the

fourth column we get:

(1234) (24) (25) (34) (36)(4)(56) or (1234) (25) (36) (56)

As there are no X's in the fifth colum this is the answer, this is the set of

the MC' s. Paull and Unger suggested another equivalent technique to find the MC' s

by starting with the smallest compatible as found in the last column and expanding it

according to the previous columns. The results are as follows:

1) (56)

2) (34) (36) (56)

3) (234) (36) (56) (25)

4) (1234) (36) (56) (25)

The upper bound is now 4 states, but the lower bound is only two states:

(1234) (56)
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A check if the lower bound is closed shows that (1234) implies (56) (36)

and (25), as (36) and (25) are not members of any compatible the lower bound

cannot construct the R. F. T. A check shows that (25) and (36) are closed

therefore we need only rows 1 and 4 which form a compatible and imply (25) which

is already included in the set of compatibles, hence the R. F. T. consists of 3

states:
00 01 11 10 00 01 11 10

A (2) A - CGB B - 1 1 1
B=(36) B B C A A 0 0 0 1

C= (14) C C C B C 0 1 0 1

Ex. 2.8

Reduce the following flow table:

Inp. 00 01 11 10 00 01 11 10

P.S. N. S. Output

1 1 2 - - 00 01 - -

2 - 2 3 - - 01 00 -

3 - - 3 4 - - 00 00

4 5 - - 4 00 - - 00

5 5 - - 6 00 - - 00

6 - - 7 6 - - 10 00

7 - 8 7 - - 00 10 -

8 1 8 - - 00 00 - -

2 V

3 V V

4 1.5 V V

5 V V 4.6 4.6

6 V x X V V

7 2.8X X X V V v

8 X X V V V

1 2 3 4 5 6 7

1) (12345678)

2) (123456) (234'b78)

3) (12345) (13456) (2345) (345678)

4) (12345) (1456) (45678) (3458)

5) (12345) (1456).(45678) (3458)



The upper bound is 4 compatibles the lower bound is 2 compatibles:

(12345) (45678)

A check for closure shows that (1 5) and (46) are implied and both are

included in the compatibles.

As state 5 is included in the first compatible it is redundent in the second

one. Same rule cannot be applied to State 4 as the set (46) is applied by the first

compatible. The R. F. T. will consist of two states:

A = (12345) N. S. Output

B = (4678) 00 01 11 10 00 01 11 10

A A A A A 00 01 00 00

B A B B B 00 00110 1 00

Ex. 2.9.

Consider now the flow table of example 2.6. According to the method of Paull

and Unger we get:

2 X

3 X V

4 X V V

5 V X X V
4.7 v X

6 x 337V

7 X 4.7 V V V V

1 2 3 4 5 6

1) (1,5) (2, 3,4, 5,6,7)

2) (1,5) (2,3,4,6,7) (3,4,5,6,7)

3) (1,5) (2,3,4,6,7) (3,4,6,7) (4,5,6,7)

4) (1,5) (2,3.4,6,7) (4.5,7)

The lower bounds is closed, hence it is the solution.

A = (1,5) B = (2,3,4,6.7)



D. The Design of the Output Circuit.

According to Huffman's method the outputs correspond to the states of the machine,

hence for all stable states the outputs are well defined. By "defined" we mean that the

output may be defined as a one, zero, or don't care. The unstable states however, are

in general not specified directly, and so, we have the freedom to assign to those entries

a zero or a one in order to get most economic circuit. There are several limitations

for such an assignment, these limitations may be divided into two groups:

The first group consists of general limitations which hold for almost all

networks. The second group consists of restrictions which are specified for each

network.

The first general principle is not to. allow any false output while the machine

changes from one stable state to another stable state, or in other words no output

is allowed to change its value during the transient time for other purpose than to get

the newly assigned value. This principal can be explained by the following examples.

Machine A has in state (Dan output 00 , in state Q the output is the same.

While changing Q 2 -. it is not desirable that in the nonstable state 2 the output

will be different from 00 . This is correct for all cases except where the output

has a very long time constant compared to the time constant of the nonstable states

in the machine.

Machine B has in stateQan output 01 and in state ) an output 11 • It is not

desirable to assign to the nonstable state 2 an output 10 or 00 . The first output

changes from 0 to 1 therefore the nonstable state may be a 0 or an one. Till the

change Z1 = 0 and it may remain so during the nonstable state or it may change to

Z= 1 and to remain so during the nonstable state and during state Q . However

Z 2  1 in both states hence it is not allowed to change Z 2 momentarily from 1 to

0 and back to 1 • The possibilities of assigning the nonstable states in this machine

are 01 or 11 In this case too, if the response time of Z 2 is long we may assume

that the change of Z 2 in state 2 does not cause any disturbance to the machine.

From the same reasoning we conclude that if Z in state (Dis 01 and in state

11 ,there are two possibilities to assign Z in state 2, 01 or 11. The last

case is machine C where Z in state (D is 01 and in state ()10 • The question is

if we are allowed to assign Z = 00 or Z = 11 in the unstable state 2 . Z1 and Z2

change from 0 to 1 or from 1 to 1 , hence it is allowed to assign to Z1 and Z 2

0 or 1 • Therefore in this case all possible assignments of the outputs are allowed.

As a note we may add that these reasons are not strong as rules, and the decision is

always left to the designer. Caldwell' in his book states that in the example of

machine C assigning to Z the values of 00 or 11 will cause a momentary false

output. However as explained before these assignments are correct because no

output changes - twice during the transient time, and all the changes are necessary in
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order to get the values of state

Consider machine D of example 2.1 . In this machine the requirement is

that all output changes are to occur as soon as possible.

X2 X1

Y2 Y1 O0 11 11 10 00 01 11 10

oo i 2 - 6 00 0 -

01 3 - 00 1 - 1

11 Q 5 4 11 1 -

10 1 - 10 1 - 1

flow table Z map

To states 4 and 5 we have to assign the value Z = 1 because to these

unstable states the machine comes from state 0 in which Z = 1 , and from these

states the machine goes to states ®and ® in which Z = 1 . Same for entry 3.

In entries 2 and 6 we have the choice to assign Z = 0 or Z = 1 , but as we

want that any changes in Z will occure as soon as possible we assign Z = 1 • Same

reason gives in state 1 Z = 0

0 1 - 1

I 1 - Final Z table

1 1 - 1
0 1 - 1

If the requirement was that the green light is to change to red as soon as.

possible but red into green as late as possible (i.e. a change from Z = 0 to Z = 1

as soon as possible and from Z = 1 to Z = 0 as late as possible), the only change

would be in this case that state 1 will be Z = 1 , instead of Z = 0 .

Another example will be the following flow table and Z matrix.

2 ® 6 10 01

3 @ 11 11

Q 5 - 6 00_ ® 4 00l o
1 0

The unstable state 2 is a transient state from ( and Tto Q. Considering

the change fromOD to 0, Z changes from 10 to 11 hence Z is to remain 1 and

Z 2 may be either 0 or 1 • But from the change from ( to 6# we conclude that

Z does not change and Z1 may. be either 0 or 1 , therefore we must assign to

entry 2 the value Z = U. Entry 3 may be any value because from both (D and
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kto Z changes from 11 to 00. Entry 1 must be 10 and entry 5 may be 00

or 10 . In the same manner we assign values to all the entries. Whenever a choice

exists we use the assignment that will best simplify the circuit.

The following circuit is the result after all unspecified entries where

assiglied values in order to simplify the circuit.

10 11 01 11

00 11 01 11

00 10 01 00

10 1001 00

A special case is the following network:

001 T - circuit to be designed

T I I DD - Detector

X2 I0

D is a detector that is sensitive to each change in the output. Let the output

01 operate an alarm in D. In such a case while designing the output matrix it is

not allowed to let the unstable state 2 [between stable states (= 00 and 2 = 11
to be 01 or 10 if 10 operates another thing in D • In such cases 2 can be 00

or 11 • In any case where the outputs of T lead to another circuit D - the inputs

of which are the outputs of T the designer has to be very careful when assigning

the unstable states of the output matrix, and to consider the effects of each assign-

ment on the operation of D . In circuits where the outputs are independent (i.e. each

output controls its own operation, as green and red lights) the technique is as

described in the preceding pages. It is worthwhile to note that the design of the out-

put matrix is some times easierbyusing the methods of Huffman and Moore rather

than the method of Mealy. While Huffman and Moore associate the outputs with the

states of the machine, Mealy associates the outputs with the inputs to the machine

in each of its states. While the method of Mealy is recommended for synchronous

circuits it is not advantageous for asynchronous circuits.
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III. MINIMIZING OF INCOMPLETELY SPECIFIED SEQUENTIAL SWITCHING
CIRCUITS

A. INTRODUCTION

Given a flow table of a sequential switching function in which some of the
10.

entries are not specified, Paull and Unger in their paper developed a rrethod of

finding the maximal compatibles, in order to minimize the number of states in the

flow table.

A brief review of some of the theorems and definitions in the above mentioned

paper will be given here, as this Work is based on them.

A grouping of all the rows of a flow table into C sets will be said to be

closed, if every set implied by any Ci is included in one of the C sets.

" A compatible is a set of states o" a flow table that constitutes one member

of some closed grouping" , i. e. states that do not contradict in their outputs may

form a compatible if their input entries belong to another set of states in the flow

table.

A set of states is a compatible if, and only if every pair of states in that set

is a compatible (i. e. (1, 2, 3) are compatible only if (1, 2) (Z, 3) (1, 3) are compatibles).

A maximal compatible (MC) is a compatible that is not included in any

larger compatible.

According to the method of Paull and Unger one must find the MC' s in order

to reduce the number of rows in the ilow table. However the main goal is to achieve

the minimal closed set of compatibles that will give the solution. The process de-

veloped in this paper results in:

1. Eliminating the "Implication Table" in the form given in reference 10.

2. Eliminating the need to find all MCs.

3. Simplifying the technique of finding the MCs.

This method can as well be applied to completely specified sequential switch-

ing functions.

B. MAXIMAL COMPATIBLES - PROCESS FOR FINDING THEM

The method will be illustrated by several examples (some of which are taken

from the above nntioned paper) and the following rules:
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1. Draw an array of points, each of which represents a row of the flow

table. The points are numbered to correspond with the numbers of the states of the

flow table.

Z. Check each pair of states in the flow table for compatibility. If the

pair is a compatible set of states draw a line between the correspondingly numbered

points.

3. If for a pair of states the oqtputs are not contradictory, but the entries
in the flow table are not the same - draw an interrupted line between the correspond-

ingly numbered points and write the conditions for compatibility in the space.

4. If the outputs are contradictory do not draw a line.

5. After checking all possible pairs, check if there is any contradiction

to the conditions for compatibility as found according to rule 3. If there is a con-

tradiction (i. e., if the condition is ab but between points ab there is no line drawn),

cross the condition and ignore the interrupted line. If there are no contradictions

to the conditions the interrupted lines have the same significance as the solid

line s.

The exact method to check states for compatibility was described in the pre-

vious chapter. According to theorem 2 in the above mentioned paper we get the

following rule for finding directly the maximal compatibles:

6. In the graph developed according to rules 1-5 check for complete poly-

gons. A complete polygon is one, in which all the possible diagonals exist (i. e. ,

(n-3) n diagonals, n z number of sides in the polygon).

The states which correspond with the numbered points of the complete poly-

gon are compatible. Start first from the highest order polygon and proceed check-

ing through lower orders down to triangles and simple lines.

After a complete polygon of the order n has been found all polygons of the

order n-l, the verticles of which are included in the polygon of order n do not need

further attention. All possible complete polygons which are not included in higher

order polygons give the maximal compatibles.

In the flow table P. S. means present state. N. S. - next state. x I xZ...

are always the imputs.
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Ex. 3. 1

P. S. N. S. OUTPUTS
x 1 x2  x 1  x2  2

1 0 -

2 - 1 0 4-.

3 1 - -

4 0 - .06
5 6 4 1 5
6 -5 - -

4
There are 3 complete squares

(1, 2,3, 4,) (1, 3, 4.6, ) (3, 4.,5.6,)

Ex. 3. 2.

P. S. N. S. OUTPUTS
X 1 XX 3 X 4  X1 XzX 3 X 4  2

1 - 3 52 -1I11 1.
2 5 - - 0 --.
3 6 6- 0 1--
4 - - 2- - -1 - >
5 -6 1 4 - 0 0 1
6 3 -2 3 0 -0 1

(1,2,3,4) (5,6) (3,6) (2,5)4

Ex. 3. 3.

P. S. N. S. OUTPUT243. 2
1lx2  lx2  P

1 2 3 7
2 4 5 -

3 7 6-
4 4 5 0 1
5 7 6 1 1
6 7 6 1 _0 .
7 4 5 1 1

As there are many "crossed" lines in this 62
example it is better to redraw the graph 6 .
without the "crossed" lines, in order to
make it clearer.

5 4
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7
6/ 3

5 4

The MCs are: (1,2,4) (1,2,7) (1,3,6) (1,3, 5).

But with some experience one can see that in column X the entries 4 and

7 are used many times. It is advisable, therefore, to start checking the states

4 and 7 which contradict in their oatputs. Hence whenever the condition 4, 7 exits -

the line is eliminated. Same for entries 5 and 6 under column X2

This checking saves time and simplifies the graph.

C. THE TECHNIQUE OF SIMPLIFYING FLOW TABLES

Another advantage of this technique is that it simplifies the method of finding

the lower bound of the MCs, without finding all the MCs in advance.

7. A simpler solution is achieved if every point of the graph appears only

once in the chosen compatibles, and when the least number of closed sets of com-

patibles is used.

According to rule 7 we have two criteria, which determine the minimality

between the reduced flow tables. First - the minimal flow-table is that flow table

which contains the least number of states (which means the least number of com-

patibles). Second - the minimal expression for the states will be achieved when the

flow-tabe has the maximum number of dashes ("don' t care" terms). Hence, when

every point will appear only once in the compatibles. After finding the simplest

solution it is necessary to check if the set of compatibles is closed. If the set that

includes each point only once is not closed (i. e., the reduced flow-table cannot be

constructed with the lowest bound), we must expand son* compatibles or add more

compatibles.
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Ex. 3. 4.

P. S. N. S. OUTPUTS6

I I - 0- IX

2 2- -

3 4 0 -0
4 - 4 0 0

5 - 5 1 -

6 5 6 -14

(1, 2, 3, 4) (2, 3, 5) (2, 5, 6) (1, 2, 6) - Maximal Compatibles

(1, 2, 3,4) (5, 6) or (1, 3, 4) (2, 5, 6) - are the solution.

In example 3. 4 - 4MCs have been found from the graph. The lower bound,

however, is Z M~s (1,2Z, 3, 4) (2, 5,6).

But we can satisfy rule 7 by the two sets (1, 2, 3, 4) (5, 6) or (1, 3, 4) (2, 3, 6),

which cover all points of the graph and form a closed set, and therefore make it

unnecessary to find the rest of the possible compatibles.

The reduced flow tables are:

(1,2?, 3, 4) = A (5, 6) = B (1.,3, 4) = C (2, 5,6) =D

P. S. N. S. OUTPUT P. S. N. S. OUT PUT

A A A 0 0 C cc 0 0

B B B 1 1 -D D D I11

The flow-tables are exactly the same.

Ex. 3. 5.

1nM. 00 01 11 10 00 01 11 10

P. S. N. S. ourT

1 1 -6- 0-0 -

2 2 -- 2 0-- 14.
3 3 5 2- 110 -

4 4 3 71 1 10 0
5 - 4 2. - 10-

6 3 - 85 0 -1 1 35
7 - 7 51 - 01 14.

8 8 4 26 1 10 14

The MC.s are: (3, 4. 5) (1.,2) (2, 7) 5

(2, 5) (6) (3. 5. 8)



However, according to rule 7 we can conclude what the lower bound will be

without knowing the MCI a.

From the graph we see that point 1 is included only in the compatible (1,2 ),

hence we need this set. In the same manner we find that all points are included in

the following compatibles: (1, Z) (3,4,5) (6) (7) (8)

Another possibility is: (1,2) (3, 5,8) (4) (6) (7)

Checking if the first set is closed we find that (3, 4, 5) implies (2, 7). A check

between points 2, 7 shows that a line exists. Hence we may expand (2) into the

compatible (Z, 7). The set (2, 7) does not imply any new set, hence the solution is:

(1,2) (3,4, 5) (6) (2,7) (8)

In the same manner we find that for the second possibility the result is:

(1, Z) (3, 5,8) (4, 5) (6) (7)
but (4, 5) implies (3, 4) (2, 7), therefore the first solution was a better one.

Ex. 3.6. 57 2

P. S. N.S. OUTPUT 5.7
X1 X2 X 1i2 T 5Z

1 5 - 1 0
2 7 2 -0
3 6 3 -1
4 7 1 1 0
5 7 -1 6

6 -- 01
7 5- 1 1

5
4

According to rule 7 the sets of compatibles that cover all points are:

1. (1. 2, 4) (3,7) (5,6)

Z. (1, 2, 4) (5,7) (3,6)

A check for closure in set No. I will show that (1, 2, 4) implies (5, 7), there-

fore we have to add this compatible (a line drawn between points 5-7). Set No. 2

is closed - therefore it represents the best solution. The flow-table assumes the

following form:



P. S. N. S. OUTPUT
__.

A (1,Z, 4) B A I 0

B= (5,7) B - 1 1

C (3, 6) C C 0 1

Ex.-3. 7 Given the following flow table:

P. S. N. Si OUTPUT

00 01 11 10 00 01 11 10

1 1 5 - 1 00 01 - 01
2 - 3 2 4 - 10 00 11
3 1 3- - 00 10- -
4 1 - - 4 00 - - 11
5 - 5 6 - -01 00 -
6 - 7 6 7 - 10 00 11
7 1 - - 7 00 - - 11

According to the rules of Mealy , states the outputs of which are not con-

tradictory are candidates for equivalency. This rule can be applied to the sets:

(1, 5), (4, 5,7), (Z, 3,6)

(2, 3, 6) implies (3, 7), instead of adding (3, 7) we subdivide (2, 3, 6) into (2, 3) (6).

The closed set is therefore:

A = (1, 5) B = (4, 7) C = (Z 3) D =(6)

P. S. N. S. OUTPUT

00 01 11 10 00 01 11 10

A A A D A 00 01 00 01
B A - - B 00 01 00 I1
C A C C B 00 10 00 11
D - B D B - 10 00 11

This flow table cannot be reduced any more, it requires Z memory elenAuts.



Applying the method developed in this paper results in:

2
7 4.7

3

The set (Z, 3. 4, 6, 7) (1, 5) satisfies rule 7 and the circuit requires only one

memory element.

P. S. N._S. OUTPUT

00 ,' 11 10 00 01 11 10

A B A A A 00 10 00 11
B B B A B 00 01 00 01

D. COMPLETELY SPECIFIED FLOW TABLES

In the last six example s we have emphasised the me thod concerning incom-

pletely specified flow-tables. Example 3. 8 shows that this method also holds for

completely specified flow-tables.

In this type of problems a line can be drawn between two points only if

the outputs are the same for the two corresponding states, therefore we have to

check only states, the outputs of which are equal.

Ex. 3.8.

P.S. N. S. OUTPUT /Z~ 3 Xx ,I hz 1 2\
1 8 1 0 1
2 3 1 1 0
3 81 1 16

4 7 4 0 1
5 6 9 1 0 1
6 7 9 1 1 V9

7 3 Z 0 0
8 6 5 0 0 6
9 8 9 0 1
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The solution is given by (1, 4, 9) (2, 5) (3, 6) (7, 8)

E. CONCLUSION

In the preceeding pages a me thod was developed for simplifying flow tables

of completeiy and incompletely specified sequential switching circuits. The main
advantages of this method are that it elimiuates the need to find all the MCs of the

flow table in order to get a simple solution. It also simplifies the technique of

finding the MCs.

The incompletely specified switching circuits are of a nature that allows

no unique solution. Therefore checking several possibilities is necessary, but with

some experience it is not very difficult, even for larger flow-tables. When the

problem is very complicated it is advantageous to find all the MCs first and after-

wards apply rule No. 7.

This method, however, does not offer solution to the problem of finding
the closed set of compatibles in a more general technique and without the need for
checking several possibilities, which sometimes, in larger flow-tables, may be

long and tiring.

F. THE CLOSED SET OF COMPATIBLES

The methods described in the previous chapters provided us with a procedure

for reducing the number of states in the flow tables and receiving a set of MC' s

The problem that we face now is how to choose the minimal closed set of

compatibles that will cover all states of the machine. In general we dont have any

rules to determine which MC I s or compatibles belong to the minimal closed set.

It is a mistake to assume that the minimal closed set of compatibles will include

any of the MC' s at all.

For every flow table the number of possibilities to find closed sets of compati-

bles varies and there are no techniques or rules according to which one can decide

what is the number of possibilities and hence it is impossible to find the set of all

closed sets of compatibles. In simple cases (ex. 3. 9 - 3. 12) after several tests
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one can find the minimal set (which is at least the lower bound of MC' s)

In large and complicated flow tables the number of the closed sets in large,

and up to now there are no methods to determine how to test all sets for closure

and rninimality, and we dont have any previous knowledge about the rminimal number

of compatibles, (except of the fact that it cannot be less than the lower bound of

the MCI s)

In the following pages a technique is presented for the determination of the

minimal closed set of compatibles. However, this technique is not complete and

when the flow tables are large and complicated the tests needed according to the

following technique are complicated and very tireing.

This technique uses the table used by McCluskey in his paper "Minimization

of Boolean Functions" (Published in BSTJ in November 1956) , McCluskey called

this table "Prime Implicant Table" . In this chapter we shall use the name "MCI s

table"

In order to find the minimal closed set of compatibles one must follow the

following steps:

Step No. 1 Given the MC' s, construct the MC' s table which shows the relations

between the MC' s and the states of the flow table.

Step No. 2. States that are included only in one compatible are circled and the

compatible is checked by this sign (',) . States that are circled are

also checked by the same sign.

Step No. 3. Try to expand the checked compatibles from a single state up to the

point where it implies other compatibles. Check the corresponding

states.

Step No. 4. States that are not checked are tested for inclusion in the compatibles

already checked. The last step requires many experiments, tests

for closure etc.

The main idea in the following method is that we start with only the circled

states assuming that each will form a compatible by itself. Only afterwards we ex-

pand this compatible in such a manner that the additional states will not imply any

new unnecessary compatibles or the compatibles which are implied by the expansion

of the circled states introduce only new states which are not yet included in any com-

patible. The technique will best be illustrated by the following examples:
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Ex. 3.9

The following flow table and the corresponding MCI a are given. Find the

minimal closed set of compatibles.

P. S. II 12

1 -. 0

2 -. 0 1.-

3 1.-

4 - - -. 0

5 6 .1 4.-

6 5.-

(1346) (1234) (3456)

The MC' 9 table is

/ V-
1 2 3 4 5 6

/(1234)

(1346)

%1( 3456) -

The number of rows in the MC' s table is equal to the number of MCI s. The

numbers of columns corresponds to the numbers of the states in the flow table. The

X' s in column 1 indicate that state No. I is included in both compatibles (1234) and

(1346). The circled states 2 and 5 indicate that each of the states is included in only

one compatible.

In this case we checked the compatibles (1234) and (3456), this mark does not

imply that in the final solution these MCI s must appear, it only indicates that sub-

sets of these MC' s must be included in the final solution. The subsets must include

only states 2 and 5 but they may include any other states which belong to the same

MC.

However, in this case the checked MCI s constitute the lower bound of MCI s

hence we try to expand the compatibles 2 and 5 according to Step No. 3.

To state 5 we can add -tates 4 and 6 and the compatible (456) does not imply

any other compatible. Note that if we would have included state 3 in this compatible

it would have implied (1, 6). To state 2 in the same manner we can add states 1 &

3 and the final solution is:

(1, 2,3) (4, 5, 6)
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Ex. 3.10

P.S. I 12

1 5.1 -. 0

2 7.- 2. 0

3 6.- 3. 1

4 7.1 1.0

5 7.- -. 1
6 -. 0 -. 1

7 5.1 -. 1

The MC' a are:

(1,2,4) (3,7) (5, 6) (5,7) (3,6)

The MC I a table is:

V V / / / /
1 2 3 4 5 6 7

(3, 7)

(5, 6, )

(3, 6)

/(5,7)

Circle 1, 2 and 4.

This circle does not necessarily imply that 1, 2 and 4 will be included in the same

MC, we may decide to take each state or combination of states separately if the MC

(1, 2,4) implies other MG's which are not necessary.

However the first logical test is to see whether it is possible to take the MC (1,2, 4).

(1, 2 4) implies (5, 7). But as (5, 7) does not imply any other compatible and it

includes only "new" states we decide to include (5, 7) in the minimal closed set. The

only states that are not checked yet are 3 and 6 and they form a MC.

The final solution is:

(1, 2, 4) (5, 7) (3, 6)

This solution is the lower bound, hence we are sure it is the minimal solution.
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Ex. 3. 11

Given the flow table of Ex. 3. 5 the corresponding MC I s table is:

1 2 3 4 5 6 7 8

(3,4, 5) - X

(2, 7) -)

(2, 5)

(3, 5,8) -,_

Circle 1, 4, 6, 7, 8. State Z is already included in the compatibles (1, 2) and

(2, 7) a test shows that (2, 7) implies (1, 2) and (1, 2) does not imply anything hence we

take the MC (1, 2).

This choice now depends upon the rest of the MC' s (i. e., if the other MG I a

do not imply (2,7)).

The only states which are not yet checked are 3 and 5. There are several
possibilities to include 3 & 5 in the compatibles which are already marked.

1) (3,4,5)

2) (3,5,8)

3) (3,4) (5)

4) (3) (4,5)

5) (3, 5) (4)

6) (3) (4) (5)

(3, 4, 5) implies (2, 7) hence we must expand (7) into (Z, 7) and state 2 appears
twice (2, 7) and (1, 2) . All other possibilities are more complicated.

The final result is:

(3, 4. 5) (1,Z) (2,7) (6) (8)

Ex. 3.12

P. SI Iz

1 2.- 3.-

2 4.- 5.-

3 7.- 6.-
4 4.0 5.1

5 7.1 6.1

6 7.1 6.0

7 4. 1 5. 1
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The MC' a are:

(1, 2, 4) (1 2, 7) (1, 3, 6) (1, 3.)

1 2 3 4 56 7
/(1, 2, 4) K \ 1

./(1,Z, 7) -: _______________

V(1, 3, 6) -:zz:

First solution is the four MC I s. However, even though the number of com-

patibles cannot be reduced, the flow table can be simplified by adding more don' t

care conditions.

State 1, 2, 3 are not circled, we add 1, 2 to state 4 and it implies (3, 5) ,

hence the final solution is:

(1, , 4) (3,5) (6) (7)

Ex. 3.13

P.SS. 1 12 13 14

1 -. 3.1 5.1 2.1
2 5. 0

3 6. 0 6. 1
4 -- -. 2.1
5 -.- 6.0 1. 0 4.1

6 3.0 . 2.0 3.1

The MC I s are: (2,5) (1,2,3,4) (3,6) (5,6)

1 2 3 4 5 6
,/(1. 2, 3, 4) , '

(5,6)

(3,6)

(2, 5)

Circle 1 & 4. A test for (1, 2, 3, 4) show that it implies all other compatibles.

However (1, 4) implies (2, 5) which does not imply any new compatible. (3, 6) is

added and the final result is:

(1 4) (2, 5) (3,6)
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Ex. 3.14

P. S. II  12 13 i4

1 9.9 5.0 8.0 -.

2 9.0 5. 5.- 2.1

3 7.0 5. 8.- 3.0

4 7.- 6.- .0 2.1
5 7.0 -. 0 -. - ..

6 3.- -. 0 3.- 3.0

7 1. 7.0 3.0 -

8 2. 0 9.0 -. 0 -.

9 1. 0 4.0 3.0 - .

The MC I s for this flow table are:

(1,2,4,5,7,8) (1,2,5,7,9) (1,3,5,6,7,9) (1,3,5,7,8)

The MC' s table is: / /

3 4 5 6 8

(1,2, 4,5,7,8) - . ., _ ,_

(1, Z, 5, 7, 9) - _ _

(1, 3, 5, 6, 7, 9) - _ _ _:_

(1, 3, 5, 7, 8) - _ _ t!

In order to test the compatibles for closure we can start with either of the

circled states. Starting with state 6 we try to add to it the states 1, 3, 5, 7, 9 in

such a manner that it will imply the least number of other compatibles.

Adding 3, 5 to 6 we get (3, 5, 6) which implies (3,8) and (3, 7). (3,7) implies

(1, 7) which results in the MC ( 1, 3, 5, 6, 7, 9) . This MC implies itself and the com-

patibles (3,8) (4, 5,7). (3,8) implies (2,7) and (5, 9( hence we must expand (.4, 5,7)

into (2, 4, 5, 7) which is a compatible also.

Therefore the final solution is:

(1,3,5,6,7,9) (3,8) (2,4,5,7)

The states that appear twice in these compatibles are: 3. 5, 7 , and it can be

easily shown that there is no way to simplify this solution.
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Concluding Remarks

The method presented in Chapter III simplifies the procedure of reducing the
number of states in flow tables which are not completely specified. The reduction
method consists of two parts, finding the MC I s and from which deteriming the mini-
mal closed set of compatibles that will form the reduced flow table.

In Chapter III (A - D) attempt has been done to combine these two parts and
to find directly the minimal closed set of compatibles. In several examples this
technique succeeded. However no general method has been found yet. and the re-
duction problem of incompletely specified flow tables requires trials of the sort
of "cut and try"
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IV. SYNCHRONOUS CIRCUITS

INT RODUC TI ON

The synchronous circuits differ from the asynchronous circuits in that they

are driven by a clock pulse which controls the time at which the circuit may change

state. In the synchronous circuits electronic devices are used in order to realize

the alegebraic equations. Instead of levels of voltage which were used in the asyn-

chronous circuits to represent the variables, in the synchronous circuits the variab-

les are represented by pulses.

There are several types of pulse circuits, however the most important cir-

cuit used in the synchronous circuits is the Flip-Fiop.

Due to the fact that all transitions from states are controlled by a clock

pulse, the races which were a very important problem in the asynchronous circuits

do not occur in the synchronous circuuts, because the different speed of operating

and releasing of the electronic devices does not effect the final state.

The main tool in solving the design problems of the synchronous circuits is
4 3the sitate diagram, described in Chapter II B and developed by Moore and Mealy

The state diagram is constructed by examining each state and determining

the next state for each of the conditions of the inputs.

After a state diagram is constructed it is simplified (an intermediate step of

constructing the state table can be used here), and a flip-flop state is assigned to

each of the system states.

In the synchronous circuits all inputs and output s are pulses, the shapes and

durations of which are assumed to be compatible with the electronic devices.

The output pulse is obtained if and only if pulses occur at the inputs in a

certain specified order.

The Design of the Synchronous Machine

The design of the synchronous sequential machine will be illustrated by the

following examples:

Ex. 4.1

Design a circuit that will give an output whenever one of the following sequences

of pulses occur-

1100, 1010, 1001.
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Assume that the pulse train is not interrupted and that after an output is

given, the machine starts from the initial state. According to Mealy' a method

the following state diagram is constructed.

0/0

1/0

00/I
0/0 / 0/1

1/0

10

I/0

State I is the initial state, a zero input does not start any sequence, hence

the machine remains in the same state.

State Z is the state that carries a "one"

A zero can start either sequence 1010 or 1001, a one can start 1100. In state

3 any change of input that is not zero does not change the state of the machine (i. e.,

1111 can be the start of the sequence 1100) therefore it waits for a "zero" pulse,

kiich moves the machine to state 5. Another zero in state 5 results in an output as

the first sequence is complete. However, a one in state 5 means a sequence like

1101 which cannot form any of the other sequences (which result in an output) but it

can form the beginning of a sequence, therefore an arrow leads to state 2. Tae last

arrow which may need an explanation is from state 7 to 3.

To state 7 the machine goes when the pulses were 101, an additional 1 will

give 101l which does not result in an output, but can be the beginning of the sequence

1100, which brings the machine to state 3.



49

The corresponding flow table is:

P. S. N. S. OUTPUT

0 1 0 1

1 1 2 0 0

Z 4 3 0 0

3 5 3 0 0

4 6 7 0 0

5 1 2 1 0

6 11 1 0

7 13 1 0

This flow table (which is called also state table) cannot be reduced anymore,

the realization of the machine requires 3 flip-flops.

Ex. 4. 2

A lock of a safe is controlled by pulses from two push-buttons X1 and XZ.

The lock opens if X1 X2 are operated (depressed and released) in the sequence X1 X2

XZ X1 or X. X1 XI XZ . The lock opens and remains open after the last pulse n the

sequence. If the buttons are pushed in any other sequence, an alarm is stopped, and

the lock is closed by an external action.

It is obvious that we need nine states, four states for each sequence and one

state for the alarm. The 3tate diagram is as follows:

saXil/O X XI/I X/rozd a

re i f r X2  / rinIX2/ 
XmI Xt/_

X1//0 X 1 /0/

State I is the initial state, state 9 -is the alarm state. Output I is the alarm,

output Z is the lock of the safe. X I moves- the machine to state Z, X Z movesa it to

state 3 etc. , till the sequence X 1I X 2 X 2 X I is performed and the safe opens.

Pressing first X 2 bring the machine to state 6.



50

However if the required sequences are interrupted the machine moves to

state 9 and the alarm is on.

The state table corresponding to this state diagram is:

P. S. N. S. OUTPUT

1 2 6 0 0
2 9 3 1 0
3 9 4 1 0

4 5 9 2 1

5 5 5 - -

6 7 9 0 1
7 8 9 0 1
8 9 5 1 2
9 99 -

In state 5 the lock is open, hence whatever the input is the output is not

specified. Same for state 9.

Applying the method for reducing the number of state in state tables we

get:

States 5 and 9 are equivalent. A = (5.9).

Due to this fact the next states of states 4 and 5 are the same, therefore

A = (4, 5, 9). The final state table is:

P.S. N. S. OUTPUT

1 2 6 0 0

2 A 3 1 0

3 A A 1 0

A A A 2 1

6 7 A 0 1

7 8 A 0 1

8 A A 1 2
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V. SECONDARY STATE ASSIGNMENT

INTRODUCTION

The problem of assigning the binary variable states to represent the internal

states of the machine is the most difficult and complicated part in the whole design

of the sequential machine.

A poor assignment may result in a circuit that will be very complicated and

will require more secondary elements than are needed with a better assignment.

Let n be the number of rows in the reduced flow table. Then the minimal

number S of the secondary elements is:

S log, a

In oher words, S secondary elements have 2S secondary states which may be assigned

to a flow-table of 2 S rows. But as will be seen in this chapter, this lower bound of

the number of memory elements cannot always be achieved.

There are two criteria to check whether the assignment is optional. First,

if the number of secondary elements is the minimal possible to realize the flow-table.

Second, if the circuit that was designed is the least complicated, i.e., requires

minimum number of logic devices.

An example taken from reference 14 will briefly illustrate the importance

of the second criteria.

Ex. 5.1

Given the following flow table:

INPUTSP. s. o 1 1 z

0 3 2 0
1 5 2 0

2 4 1 0

3 1 4 1

4 0 3 0

5 2 3 0

We shall consider the following assignments and Compare the equations for

the sequential machine.
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YI YZ YZ Y1  Y2  Y3

0 --- 0 0 0 0 - 1 1 0

I a0 0 1 1 - 1- 0 1

2 0 1 0 z I 0 0

3 -- 0 1 1 3- 0 0 0

4 1 0 0 4 0 0 1

5 - 1 1 0 1 5 - 0 1 0

assignment a. assignment b.

The exitation matrices for these assignments are:

YI Y2 Y3Z 0 1 Z

0 0 0 0 1 1 0 1 0 0

0 0 1 I 0 1 0 1 0 0

0 1 0 1 0 0 0 0 1 0

0 1 1 001 1 0 0 1

1 0 0 0000 1 1 0

1 0 1 0 1 0 0 1 1 0

assignment a.

Y YZ Y3 0 1 Z

1 1 0 0 0 0 1 0 0 0

10 1 0 1 0 1 0 0 0

1 0 0 0 0 1 1 0 1 0

0 0 0 1 0 1 0 0 1 1

0 0 1 I I 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0

assignrment b.

The corresponding equations for the secondary variables are:

YI = :1 72 Y3 X + Y2 f3 X y y 3 X

assignment a. Y2 = "Y X + l 7273 +yY 3

Y3 3 X + Y2 Y3



53

y
I = ylx + x

assignment b. Y2 = Y3 X

Y 3 - 7Z 73

From the two sets of equations we can see that the secondary assignment is

of great significance. The question is how to assign ZS secondary states to the n rows

of the flow table.

In the asynchronous machines the secondary assignment has to be such that

the races will be avoided.

In the synchronous machines the problem is to assign the binary flip-flop con-

figuration to each of the states of the flow table, and to design the exitation of the set

and the reset of the flip-flops.

We shall consider both, the synchronous and asynchronous circuits, using al-

ternately the methods of Huffman and Mealy.

In general there is no method to find the best assignment; there are several

techniques which do not promise a good result, but are of some help to the designer.

The first problem is to decide what is the number of the essentially different

assignments possible for an n - row flow table.

M Cluskey and Unger in their paper proved that the number of distinct row

assignments for an n - row flow table is:

N (z s . ) !

( S - n) ! S

where n < 2 5

If n <2 the total number of possible assignment is 2 .

(2s - n)

However, many of these assignments are essentially equivalent to each other,

since they differ only in that some of the states variables have merely been relabelled.

S binary variables have S . permutations, and there are 2S ways of comple-

menting them and thus S ! 2S ways of permuting and complementing the S binary

variable s.

But in order to get essentially different assignn-ants the number of possibilities

decreases by S I S and it becomes:
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NS = (2S -1)2
(25 - n)! S' Z (ZS - n)., S.

This formula is restricted to the synchronous functions. In the case of asyn-

chronous functions it is necessary to check each assignment if it does not lead to a

critical race condition.

If more than S state variables are used, this formula becomes unsatisfactory

since some of the assignments counted are degenerate. For example if n = 4

S = 2 then N = 3.

But if we use S = 3 then according to this formula N = 35 . As stated before

this result is not exact because some of the assignments have some state variable

constant for all rows, or have two or more identical state variables.

Several other formulas were given for special cases. In the case described

before it was proven that N = Z9 instead of 35

1) ASYNCHRONOUS CIRCUITS

A. Race s

A race occurs when a single change of the internal states involves the change

of two or more of the secondary variables. Or when a single change of the input

causes a change of two or more of the secondary variables simultaneously. A change

of the inputs causes the machine to change an internal state. If the machine can

reach its destination by passing through several unstable states, we say that a race

exists. However, if the machine does not reach its required destination, and reaches

instead another stable state, we say that a critical race exists, and the machine is

non-deterministic. Moore 4 calls these kine of machine - not speed independent.

In this definition he means that the machine depends on the operating and releasing

speed of the secondary elements.

Let us illustrate the problem of races by the following example.

Ex. 5. Z

Given the following exitation matrix (a). In fig. (b) a circle describes a stable

state, a dot describes an unstable state.

The solid lines indicate transition from unstable state to the corresponding

stable states. A race condition is indicated by the dotted lines.
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x x X2 X I

Xc Y3 Y2 " 0 0  01 11 10, 00 01 11 10 000
Y3Yz¥1 00'001

0O 0 0 0 0 0 1 0 0 0 0 1 00

0 0 1 O0 1 0 10 0 0 0 10 1 Oil

0 1 1 0 0 0 0 1 0 0 1 3 1 1 1
0 1 0 0 1 0 0 1 0 1 1 0 1 1. 0 010

1 1 0 1 0 1 1 1 1 1 1 1 0
1 0 1 1 1 0 1 1 1 0 0 1 1 1

1 0 0 000 1 11 11 0 0 1 0'0'0

100

(a) (b)

Each next state will be denoted by the five digits Y3 YZ yl x X 1

A check through column 00 will show two race c3nditions. The state 01100 is

unstable, and as indicated its desired destination is state 000. This transition re-

quires a change of two variables yI and y. . Hence this circuit depends on the

speed of the secondary elements. If y1 is faster than y. , the transition will be to

state 010 which is stable; therefore, the machine will remain in this state and will

not reach its destination 030 . Only when the speed of both secondary variables is

the same will the machine reach state 000 . But the probability that both have C-C-

actly the same speed is very small, and this becomes a critical race. In this case

due to different speeds of releasing of the secondary elements, the machine did not

reach its destination and ended in a different state.

The square 10100 is unstable and is to be stabilized by a change to state 110

and from which to 100 -- ,000 . If the speed of both relays is different, the trans-

ition may be to any of the three unstable states 110, Il, or 100 . However from

each of these states the machine will end in reaching state 000 . Hence this race

is not critical. Other critical and non-critical races may be found in column 01

In column II there are no races, but there is a closed' loop of unstable states. This

situation is not allowed because once the machine enters this cycle, it will continue

indefinitely unless. a change in the input is made to stop it.
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In the synthesis of sequential circuits it is allowed to use non-critical races

in order to simplify the circuit, but the critical races or the closed loops must be

avoided.

Ex. 5.3.

Given the following flow table, let us check it for races.

N. S.
P. S. 00 01 11 10

a a b c d

b b b d b

c c d c c

d a d .1 d

Assuming that the machine is in state a, any change of the input requires a

change to a different next state. For example, if the next input is I1 , the machine

is supposed to change to state c, but if both inputs do not occur at exactly the same

time, the machine will be in state b or d, depending on the inputs. This again is

a critical race and it must be considered while designing the machine. To avoid

this kind of races it is sometimes not allowed co change two inputs or more at a

time.

But this flow table has another kind of race, due to the fact that in order to

realize it with only two secondary variables for some changes in the inputs, the

final state of the machine depends on the speed of the secondary variables.

B. Coding and Assignments to Avoid Races

In order to avoid races each transition is accomplished either by a change of

a secondary state in which only one secondary variable changer or by a change of

secondary sLate in which a multiple change of secondary variables does not involve

critical races.

Given a flow table, in order to assign the secondary variables to the rows of

the flow table one has to decide which secondary states (rows of the flow table) must

be adjacent, (i. e. states which differ in only a single variable).

Caldwell I in his book suggested a simple graphical method which - as all

graphical methods - has the disadvantage of becoming very complicated as the
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number of states in the flow table increases. Huffman studied these problems in

detail. His methods of coding are based on two sLandard circuits - the 2 S + I

realization and the one relay per row realization - . In the first method Huffman

proved that 2 S *- 1 relays - (S = log, n when n is the number of rows in the flow

table) will always avoid any race in any n - row flow table. In the second standard

circuit each row of the flow table has an associated relay. However, these methods

are not economical; the number of secondary variables which is required is ex-

tremely large; and the combinational circuit becomes very complicated.

Given a three-row flow table in which it is required that all rows are adjacent

to each other. Assigning two secondary variables to these rows may result in

critical races. If we assign the secondary states 00 01 11 to the row8 of the flow

table, the machine may never enter the state 11 if the second relay operates faster,

because secondary state 00 will change to 01 as it is a stable state, the machine

will remain there even if it was initially intended to reach state 11 . However, if

we assign the secondary states 00 01 and 10 to the three rows of the flow table

and use the state 11 as a transit unstable state; the machine will operate without

critical races. In order to avoid all kinds of races we must use at least 3 secondary

variables. It becomes easier to decide which row must be adjacent if we use a

simple graphical technique. Tn the following graphs the vertices are correspoixing

to the present state of the flow table, and the lines are corresponding to the required

transition between the states (or required adjacencies between states).

Ex. 5.4.

As an example we consider a four-row flow table. We want to determine in

what cases can this flow table be realized with 2 secondary variables.

0(00) b(OI) 0 b

d (10) CO) d

pattern C pattern
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0(00) b(0 a b

0I1) d c(110) d C

pattern y pattern 8

It is obvious that only patterns G and y can be realized with two secondary

variables. We conclude that a pattern can be realized with two secondary variables

if it does not contain any triangles and if no vertex is connected to more than two

other vertices. Caldwell defines this rule as the "odd-even rule" . According to

this rule when two secondary states are adjacent, the code of those states must con-

tain for one state an even number of 11 s and for the other state an odd number of

11 s ( 00 is considered as even number). In pattern P or 6 this rule is violated be-

cause there exist in the patterns triangles, and a triangle always violates the odd-

even rule. (If a is even, b and d must be odd, but then b and d violate the

rule as both are odd).

Ex. 5.5

Given the following flow table (Mealy' s model, outputs omitted).

N. S.

P. S. 00 01 11 10

a a b d c

b a b b b

C a c c c

d a c d b

The pattern of this flow table is:

ab

d C

Hense this machine will have at least three secondary variables, and even then non-

critical races may still remain in the operation of the machine.
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Caldwell suggested a method of "breaking" the triangle i. e. adding another

node in such a manner that there will be no triangles in the pattern of the flow table.

In our example by adding a node between node a and node d we get:

I //

* d

a b

Hence state a is adjacent to states b and e and through the unstable state f, it

is "partially adjacent" to state c . Same about states d and c . The dotted lines

indicate transition due to non-critical races.

It is worthwhile to mention that this is not a unique solution. In fact the num-

ber of possible assignments in this case is very high, and no method exists to deter-

mine which solution is better and simpler.

Ex. 5. 6

Consider the following flow table:

1 070 ,® ® 7
® 1) 4 5
Z  I® ,6 7

a b

pattern for flow table 5. 6.
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At least 3 secondary variables are needed. In general there are several

possible assignments for this flow table.

Assignment a .
(110)

(100) d -- - (101)

0(000) b (00I)

In this assignment it is only fortuitous that the code of a is 000, and there

is no way of knowing if another coding (111 for example) would not result in a sim-

pler combinational solution.

Assignment P c(0I0)

- I(Id - /

I I t I

I / I/

0(000)

None of the secondary states are adjacent. All transitions between rows re-

quire two changes of secondary states.

000 -(D 3 67'
001 1 3 6 7

Ol 1 @ (D 7
010 1 4 5 7

110 0 4 5 7

ill 2 4 6 7

101 2 G 6 7

100 2 3 5 7
L -
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Assignment ,' b2 (01) 02(111)

(100)1 di 
I(0c

01(000) bI (001)

In this assignment each present state is represented by two different secondary

states. All transitions between row-sets require just one time of operate or release.

A row-set is any number of secondary states which represents one present state in

the flow table. Although the individual states in the matrix are not necessarily ad-

jacent, each pair of row-sets is adjacent to the other three pairs of row-sets.

The output is assigned to both secondary states equally. The non stable states

are labeled according to the stable states which they go into.

000 3

001 1 7

010 4 z

110 1 2 7Z

ill

101 ( (41 5z 7

100 2 6z 7
IO I k4 1 I ' ! V

Flow table for assignment y.

The row sets can be either as in assignment y or they can be adjacent, (i. e.,

a , adjacent to a2 etc.).

Discussion

The technique which we studied in the last chapter has several limitations.
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It is fairly simple for small flow tables and for the cases where no races are allowed

(critical and non critical). By constructing the map of Karnaugh we could use this

technique for flow tables of at most 16 rows. If non critical races are allowed the

number of possible assignments and adjacencies is very large, and the best that can

be done is to try several possibilities and to find which willgive a simpler solution.

However, as the number of possibilities is very large, the probability of picking the

best assignment is very small. This technique does not consider the factor of the

combinational circuit which is realized from the flow table; the importance of this

factor was illustrated in example 5. 1.

Finally we can conclude that this technique can be a way to check if there is

a possibility to make the assignment with a certain number of secondary variables,

and to decide what this minimal nunber is. But this is not a method to determine

how to make the coding of the present states nor how many secondary variables to

use, (which must be equal to or greater than the number that was found by this tech-

nique).

Other techniques, as the relay per row realization, are in general solutions

to solve the problem of races, but they require a large amount of secondary variables

and logical devices so that it makes this techniques impractical and purely theoretical.

2) SYNCHRONOUS CIRCUITS

C. Secondary Assignments using Partitions.

In the introduction to this chapter it was mentioned that there are two criteria

to decide whether an assignment is good or not.

First criteria is the number of secondary variables necessary to represent

the different states of the machine. Second criteria is the simplicity of the machine,

i. e., the number of logical devices required to realize the flow table.

The question that arises is whether these two criteria always agree and, if

they contradict each other, to make the optimal assignment.

Ex. 5.7

Given the following flow table:

N. S.

P. S. 00 01 10 11 Z

a b c d a 0

b a c d a 1

c b a d a I

d b c a a 1
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Let us make two different secondary assignments. Assignment a using two

secondary variables, assignment using three secondary variables.

Yl YZ Yl YZ 'Y3

a - 0 0 a - 0 0 0

b - 0 1 b -- 0 0 1

c :1 0 c ----. 0 1 0

d -1 1 d - 1 0 0

assignment a assignment

x X

l\ 00 01 10 11

0 0 01 10 11 00

0 1 00 10 11 00

1 0 01 00 11 00

I 1 01 10 00 00

Excitation matrix - a

Y= y (7X. + X1 i 2 )+Y 2 1 X2 +yzXlz

Y RxR2 1 yI +y 2  + 1
, Xl R2

Z Yl + YZ

And in the same way we obtain from assignment :

Y, ~X 1 X 2
YZ 2 YZx1Xl 2z

Y 3 -Y 3 Rl XZ

Z uyl +YZ +Y 3
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As a conclusion from this example we find that the two criteria for optimal
assignment may contradict (number of logical devices required in assignment G is

larger than in assignment p) , hence a method is needed to check in every case which

assignment is better and how to find the best one.

Even though the following technique (based on references 13-16) helps in finding

a "reasonable" assignment, it is far from being a method of assigning the secondary
variable in the optimal way.

If we study assignment P in Ex. 5.7 and assignment b in Ex. 5.1, we notice
that in both examples Y1 depends only on yl and the inputs, and Y. Y3 depend only on

Y? Y3 and the inputs.

The fundamental idea in the above mentioned references is to find a method for
the selection of these assignments in which each binary variable describing the new

state depends on as few variables of the old state as possible. In a later paper Hart-

manis15 expanded the aim of his original research and tried to distinguish between

the part of the sequential machine which can be input independent (an outonomous

clock as Hartmanis calls it) and the input dependent part.

Hartmanis' s main tool in doing it is the partition with, or without, the substi-

tution property on the set of states of sequential machines.

In his work Hartmanis assumed that the outputs depend only on the present
states and not on the inputs. Before studying the method, it is worthwhile to mention

that Hartmanis did not prove that his method leads to a unique minimal solution. On

the contrary, for some machines better solutions exist, and even though he reduced

the dependence between the new states and the old ones, the number of possible assign-

ments still remains very large.

As a final note it must be pointed out that the method is applicable to a restric-

ted class of machines which have several required properties.

The Algebra of the Partitions

In order to have a good understanding of Hartmanis' a method we shall first

study the algebraic properties of the partitions and develop the switching theory for

them.

Let I= {Il Iz .... I} be a finite set of inputs.

{S 1  Sn} be the set of internal states of a finite set sequential

machine, IZ 1 .... Zn} the corresponding set of outputs.
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Let {Y1 ..... Y. I be a set of binary variables describing the internal state

of the machine, then the ith variable Yi of the next state will depend - in general - on

I and all the variables describing the old state.

Yj = f (Y1 YZ ..... ys :1)

We want to find an assignment for which the subset {YI Y2 .... Yk} k <s

can be computed without the knowledge of the remaining state variables.

Hence to make

Yi = f (Y1 YZ ... Yk

Those assignments we call assignments with self dependent subsets. It is not always

possible to find for a machine any assignment with self dependent subsets of variables,

but there still exist a possibility to decrease the dependence.

For example when {Yl .... Yk} depends onlyonland {Yr .... y.}.

Definition:

A Partition w on a set S is defined as a collection of disjoint subsets of S such
that their set union is S. If all the subsets of S forming the partition w have the same

number of elements, the partition is called uniform. The subsets will be called the

blocks of w .

The two trivial partitions are:

W = 0 Each block consists of a single element.

= I All elements are contained in one block.

It is said that yr1 _ ir2 (ir 1 is larger than, or equal to w?), if and only if each

block of wt2 is contained in a block of w

From this definition we see that there are pairs of partitions that cannot be

compared. For such cases we define the least upper bound (1. u. b. ) and the greatest

lower bound (g. I. b. ). The I. u. b. is defined for the pair of partitions wI and wz

as the partition w3 that satisfies these equations.

i ft 1  < < ' 3

and WI r4  it < i 4

then ?r3 < lr4

Hence w3 is a partition the blocks of which contain every block of w 1 and v 2 and in •

is smaller than any other partition that has this property.
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In the same manner we define w3 as the g. 1. b. if and only if it satisfies the

following equations:

If 13 < 11 w3 < 7'2

and w 4 < i1 W4 < w

then 1w3 > 1N4

The 1. u.b. is denoted by 1 + 7 and the g. l.b. by 7r, r.

Ir *" 2 is a partition the blocks of which are obtained by intersecting the blocks of
irl and Tr2 . 7rl + "r2 is a partition the blocks of which consist of all blocks of w and

7r which are chain connected, i.e.

Example 5. 8

Let S consist of:

{ 1i S2.. S II}

and let s1 2 3 4 5 6 7 8 9 10 ll

= : T---.-T :-- -WT : -92 12 3 45 -67 8 910 11j

Then: Sr1 S 37 S -9 9- 7

11 +12 ={ 1 S 2 S 3  4 5 66  7 8 9 10il

WI + W is the l.u.b. or the smallest partition that is larger than w I and w "

W I 7r is the g. 1. b. or the largest partition the blocks of which are contained in the

blocks of it and iwf .

The complement W2 of a partition w is defined as the partition that satisfies

these two equations:

Wl IW2 = 0

Wl+I 2 = I
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The partitions satisfy the following laws:

1. W" W - 'z "W 1 I1 + W 2  iT2 + V

2. Wl "1 = W1  1 +W1 "
1 1 .

3. il' (W2" w3) = (wr .W ) w'3

W1 + (w2 + w3) = (w1 + w 2 ) + w 3

4. 1" (r 1 +W 2 ) = 1l

WI1 + (W " = W

But note that:

5. .i ( 2 w 13) > I " 12 +l T 13

W1 +[w. - w3]'< (wI + 2). (l + v3)

Definition:

A partition ir on a set of states of sequential machine M is said to have the

substitution property if for any two states S. and S. belonging to the same block of w
• I J

and any input I the states IS. and IS. are again contained in a common block of w

ISi is the next state the machine goes into from S. when the input I is applied.

If we consider ex. 5. 1. we find that the partitions are:

1 ={ I T2 : 3.-7 1

These partitions have the substitution property (S. P.)

The last algebraic property which we shall mention is as follows:

Let -fI and w2 be partitions - on a set of states S - with S. P. then the follow-

ing partitions have also S. P.

1) W1. 12

2) 1 +12

For any set of states S partitions wr1 can be found. However these partitions

do not necessarily have the S. P. The partition w with S. P. exists for the set of

states S if the firnt k variables 1 < k< s designating the next state, can be computed

from the input and the first k variables of the old state.
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Secondary Assignment Using Partitions

We let# w be the number of the blocks in the partition r, and m (7r) be the

number of states in the largest block. Then k = log, w digits are needed to

distinguish between the blocks of w and log, m (7r) digits are needed to distinguish

between the states in the blocks.

In theorem 2 in reference 14 Hartmanis states that if M is a sequential machine
with n states, then the existance of a non trivial partition with S. P. - 7r implies that

there exists an assignment of S = log, n binary digits to the states of M such that the

first k digits 1 < k <S of the next state can be computed without the knowledge of the

last S-k digits provided

S = log 2 # r+log2 m (7)

The following example will show that these are necessary conditions but they
are noc sufficient.

The existance of a non trivial partition with S. P. does not assure an assignment

of length S = log, n.

Ex. 5. 9

Il 12 '3 '4

a a b d c I1 -- 00

b a b b b 12 -- 01

c a c c c 13 -11

d a c d b 14 -- 10

w= (--d ; 97) has S. P. hence, the assignment will be:

a ---- 00
b- 10

c -11

d --- 01

W 2 m(W) Z 2

Su log? 2 + log 2 2
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x 1 x 2

1 Z 0 0 01 11 10
0 0 0 0 10 01 11

1 0 0 0 10 10 10

1 1 00 11 11 1 1

0 1 0 0, I 0 1 1 1 0

Y I = XI X 2 + X 2 X1 + XI yl

Y 2 
= X2 YZ + .l 77 XI + Yl YZ X 1

Even though it seems that a solution was found for the secondary variables,

this flow table cannot be realized with two secondary variables because it includes

several races and critical races. Hence Theorem Z holds only for synchronous cir-

cuits and for asynchronous circuits provided that there are no races in the flow table.

Furthermore this method does not give a unique solution nor a minimal one.

Ex. 5.10

Consider the flow table of the previous example with the following secondary

assignment

W a (37-J : b )

a -40 10

b --= 00

c --- 01

d -11

Then:

Y1 + Xl Xyl

Y = X Y2 + Xl Yl 2 + X 1 7 1 Y2

In this solution YI is simpler than in the previous assignment. Considering

now the third assignment as follows:

a -> 01

b ---- 11

C -.. 10

d - O0
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Y1 1 X +X 1X 2 + XI Yl
Yz-y -f- X7 ++ Yg z y + R y 2
2 1 z 1 2 ~+ 1y X 2

For this assignment Y2 is more complicated than in the two previous

assignments.

Even though the last example was a very simple one with only one partition,

the number of different solutions is large and there are no criteria to determine

which is the best assignment.

When the flow tables are more complicated, one has to check n (n - 1) pairs
z

of states in order to find the partitions with S. P. For each partition several assign-
ments are possible, so that the number of possible assignments is still very high.
The detection of assignments with more than one self-dependent subset involves con-
sideration of several partitions with S. P. and their mutual relations.

Ex. 5. I.

Given the following flow table

P.S. I1  12

03 6 '1:W :17
1 2 7

2 4 5

3 5 5
4 7 2

5 6 3

6 0 1

7 1 1

YI Y2 are needed in order to distinguish between the blocks. Y 3 distinguishes
between the states in the blocks.

But as was shown in reference 14 this assignment does nee. necessarily give
the best solution. If we consider the partition

2w= 6 : TT : 73e : su}

we may get a better solution.
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Noticing that the partition n3 is zero for:

I3 = 1 . Z = 0

Hence we can assign Y1 Y to partition 7r, and Y3 Y4 to i and we get two

self-dependent sets which may result in a simple solution even though the number of

secondary variables is 4 instead of 3 in the previous assignments.

But 74 = i 1  +. T = { Z1, 4,a - 1, T , ; , 3 , 7 }

then Y1 will distinguish between the blocks of T4 and YZ Y 3 between the states.

Again noticing that T 1 and 1TZ each splits the blocks of r 4 to two parts, there-

fore, we assign Y 1 to distinguish between the blocks of r 4

Y1 & YZ are assigned to distinguish between the block of iI and Y & Y3 be-

tween the blocks of 7r2 *

The last assignment is:

0 > 001

1 - 000

2 - - 101

3 100

4-- 011

5 - 010

6- 111

7 - 110

and the equation of the secondary variables are:

Y I ,

Y2 = yl 7 2 + 7 1 y 2 X + - X

Y 3 = 7 1 Y3 X + Y1 Y3 K*+yly 3

In this example we saw that the number of possible assignments is very large

and there are no ways to determine whether the solution we have found is the simplest

one or simpler solutions can be found.

The above solution was given by Hartmanis in reference 14, but in order to

point out on the fact that this method does not give the best solution and does not in-

dicate whether there is a better solution, we shall show that the same machine can be

realized with less logical devices when the assignment of the secondary variables is

as follows:
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4= {0b, 1, 4, 5: ,36 7

Let YI distinguish between the blocks of 4 and let YZ & Y3 distinguish among the

states of the blocks.

YI Y1  Y 3  I1 = X 1= X

0 - 0 0 0 1 01 11

1 - 0 0 1 1 0 0 1 1 0

Z - 1 0 0 0 1 1 0 1 0

3 -- 1 0 1 0 1 0 0 1 0

4-- 0 1 1 1 1 0 1 0 0

5 - 0 1 0 1 1 1 1 0 1

6- 1 1 1 0 0 0 0 0 1

7- 1 0 0 0 1 0 0 1

Y1 =

Y 2 = 7Z X + yi 7Z + i:;y2 x

Y = YZ Y3 + yI T-3 x

Y3 is much simpler in this solution than in the previous one. However there is

no assurance that this is the simplest solution, on the contrary it seems that Y2 & Y3

can be further simplified.

Decomposition of Sequential Machines

The importance of this subject has already been pointed out by Moore 4 . The

advantages of such a decomposition are numerous. It is less complicated to design

several small machines than one large machine. The speed of operation of several

parallel small machines is higher than that of a large machine.

However, even though the decomposition, when realizable, simplifies the

analysis, design, and installation of the machine, it is not always more economical.

The decomposition of the sequential machine can be divided into cascaded finite state

machines or into parallel machines, in this chapter we shall concern only the latter

one.

Hartmanis derived in his papers conditions on two partitions with S. P. under

which there exist assignments such that the S binary digits can be split into two parts

such that each part A 11 be computed independently.
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Let M be a sequential machine with n states and a binary assignment of length

S = log2 n . The assignment S can be split into two parts such that the first K

variables 1 < K <S and the last S - K variables can be computed independently if

and only if there exist two nontrivial partitions w1 and it2 with S. P. and the following

conditions are satisfied:

1) The blocks of w I have at most one element in common with any of the

blocks of w. .

1l . 2 = 0

2) log 2 *r1 + log 2 *w 2 = S

As an example we can use example 5. 1. It was shown that assignment b was

more economical than assignment a. The partitions for the flow table 5.1 are:

= (~T : 1 : 27-Y)

and:

It 1 It z = (U0.","T 4

These conditions are necessary and sufficient for the decomposition of sequen-

tial machines. However Harmanis does nct mention the fact that the decomposition by

itself has no value. The decomposition has the advantage of simplifying the machine,

but in several cases where condition No. I is satisfied but condition Z is not satisfied

the machine becomes more complicated.

As an example to illustrate this point let us consider the flow table in the pre-

vious example No. 5.11.

W I '2 = 0 hence condition No. I is satisfied.

log2 *wI + 1°$ 2 *w 2 u 4

but 4 > log 2 n

as n a 8 andlosz 8 ,i 3



74

The assignment of Y 1 Y2 Y 3 Y 4 may be a follows:

Yl Y 2 Y 3 Y4

0 0 0 0 0

1 0 0 0 1

2 0 1 1 1

3 0 1 1 0

4 1 1 0 0

5 1 1 0 1

6 1 0 1 1

7 1 0 1 0

Which results in the following equations:

Y 3=71X Y?

Y 2  1 X + Y2 X

Y 3 =73

Y4 y 3 T4 +73Y 4 + XT 3 y 4 + Xy 3 y 4

" y 3 7 4 + K f 3 y 4 + X 7 4 +Xy 3

This circuit has more diodes than the one designed in the previous example.

However, in example 5. 7 we showed that by increasing the number of the secondary

elements the circuit was simplified, hence from that example and the last one we can

conclude that the decomposition of the sequential machine does not assure a simpler

machine. Instead of one machine we' 11 need several simpler machines, the total of

which, however, may be more complicated than the one larger machine.

In the previous pages necessary and sufficient condition for the decomposition

of sequential machines were derived. In reference 16, Hartmanis showed that to

every (loop free) realization of a sequential machine from n smaller machines corres-

ponds a set of n partition with S. P. mhose product is the zero partition. In order to

discuss this subject we shall define as follows:

Let { M 1 Mi ... Mn} be a set of machines in which the outputs of any machine
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M i may be used as inputs to other machines. We shall say that the machine Mi is a
predecessor of M. if an output of M. is an input of M.. Any subset of these machines

M1 l Mi .. t. Mir} forms a loop in the connection, if the outputs of M i s an inputoutput

to Mik + I for k = I, 2 .... r - I and the outpot of Mir is an input to Mil

In our discussion we concern ourselves with loop-free machines, i. e. sets of
machines in which no subset forms a loop in their connection.

Hartmanis proved that to every closed subset C. of the set of loop-free mach-r 3
ines M1 M 2 .... Mn  corresponds a partition ir with S. P. which is induced by
placing in the same block of r all states of M which correspond to the same set of
states of the machine in C.. We shall write

3
C. C C1 - j

if the set Cj contains at least all the machines in Ci . The conditions for the existance

of this inequality are:

Given the set of sequential machines

M IM {M.... Mn}

To every subset C of M corresponds a partition with S. P. -w provided the

set of the se partitions.

is such that
~n

I"I~ i =0i 0

t And conversely, given the set of partitions with S. P.

{ 11 11.... n}

such that n

111= = 0

then M can be realized from n machines { M 1 M 2 .... Mn}.

In such a realization the information flows from Mi to Mj if

wi >: Wj
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We shall illustrate this method of realization by the following example.

Ex. 5. 12

Given machine M described by the following flow table:

P.S. N. S.

I1 12 '3 4

1 4 2 3 1

2 3 1 4 2

3 2 4 1 3

4 1 3 2 4

For this set of states exist the following set of partitions with S. P.

T, Z1 -S, 1 0

72 =, 7 TT}I

11 3 T {--3 :.

7r4 r= {ITI =7T

We check now for the subsets which satisfy the condition

n
1-I W, U,

i=l1

1. {1 1 ' 2 }

2. {1l1 "3}

3. { " ' W4}

4. 2{2' "3}

S. { W2' "41

6. {3' "4}

7. {" w s}



77

The realizations of the first and the fourth sets of partitions are as follows:

(The arrows indicate the direction of the information-flow).

I =I

realization of set No. 1

realization of set No. 4

(w/ means that ir is computed from the information given by w?AW 2

The realization of M from set No. 4 is simple. Two machines M I M

each consisting of one memory element and two states - are operating in parallel.

In the realization of set No. 1 M consists of two machines M and M. . Since

2 2: Ir1 . we get a cascade of M 1 & M 2 in which the output of M2 is the input of Mi .

From w. we obtain that M? has two states a a T-Z P * 3-T corresponding to the

blocks of 7r,

P.S. II 12 13 14

Flow table for M Z

However as I 1  13 and 1 14 we obtain:

P.S. I1  12

Reduced flow table for M 2

Where II = V 1 3

I 12 V 14
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M 1 is constructed from the partition T such that w2 0 ' a 0.

Since r2 has 2 blocks T must have at least 2 blocks.

We choose T = !" } ={y 6}

The resulting machine has a input , the exterior inputs I and additional inputs a or

designating the P. S. of M2 .

P. S. l P1 1  ___l_? P1 2

y y I 6 1 1 1 V 14

6 6 6 yy12 1I V 13

Reduced flow table for M

D. Input Independent Sequential Machine s

This chapter deals with a certain type of sequential machines which can be

divided into two smaller machines, an input independent machine and an input de-

pendent one. Hartmanis found some of the necessary and sufficient conditions for

the existance of the input-independent part in the machine (the "autonomous clock" ).

The realization of the machine from an input independent and an input dependent

machine is as follows:
1 INPUT INDEPENDENTI

INPUT INPUT DEPENDENT OUTPUT

The main tool in this study is the partition with the S. P. But in order to de-

termine the input independent variables in addition to the S. P., the partition W has

to be so chosen that it is larger than or equal to the partition w I which is induced by

the identification of the inputs.

W > WI

Furthermore we want to determine the conditions for the existance of such

an assignment of S variables Y 1 ... such that the first k variables 1 < k < s

do not depend 1) on the input 2) on the last s - k variables.

It is worthwhile to mention that the additional requirement may result in a

more complicated solution than the one that could have been found without the input

independent variables. Furthermore, there is no unique input independent machine
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and Hartmanis did not find any criteria to decide which is the largest input independent

machine. This method makes the search for the assignment very tedious and it does

not promise any better results. However, as the method offers new ideas in the

study of the secondary assignment problem, it will be briefly given in this chapter.

In order to compute ir I we have to identify all next states which are contained

in the same present state of the flow table, and then add all identifications of states

which can be obtained by the transitive law.

Ex. 5.13.

Given the following flow table

N. S.

P.S. X = 0 X = 1

0 5 4

1 4 4

2 1 0

3 0 1

4 7 7

5 6 7

6 3 2

7 3 3

Computation of w,

5 =4

0=1

6=7
2 3

Hence: w- : ]7': 473 : -7T}

A check shows that w has S. P. YI Y - will distinguish between the blocks of

Y3 between the states of the blocks.

0--*0 0 0

1 --- 0 0 1

2---0 1 0
3-0 1 1

4 -- 1 0 0

5 - 1l 0 1
6-'l11 0
7 -01 1 1
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The corresponding equations are:

Y1 = V2
yz =

Y3  7 3 X +Y 2 Y3 X +Yl YZY 3 +Yl7i X

As seen from these equations YI & Y2 are input independent where Y3 is input

dependent. However, the partition ir = { 0,67 : 73T I satisfies the require-

ment of S. P. and v > 7; therefore, it is another autonomous clock.

Ex. 5. 14.

Consider the following flow table:

P.S. N.S.
X= 0 X= 1

0 5 3

1 4 a
2 1 5

3 0 4

4 3 1
5 2 0

W I has S. P.

Let us check several possible assignment for this flow table:

assignment a

0 ---- 0 0 0

1 --- 1 0 0

2 -'--a0 0 1

3 - 1 1 0 1

4 - 0 1 1

5 -1 1 1

The corresponding equations are:

Y1 = I

2 = f3 + x2 y3 X
Y3 " ? X + i3 + Y2
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assignment

In order to improve the results of assignment a, one can see that to distinguish

between the states in each block we used Y2 & Y3 in the following manner:

00 01 11

But with this assignment we used Y & Y 3 together when only Y2 could do the same

thing; hence we shall assign Yz & Y3 as follows:

00 01 10

xx
0 - 0 0 1 10 101

1 -.- 1 00 010 001

2--> O O1 1 00 11 0

3 - 1 01 000 010

4 -. 010 101 100

5 - 1 0 001 0 00

6 0 1 1 -
7 --- 11 --

Y 1

YZ= y.y 3 X + y 3 X

Y3= YzX + Yz73 X

However the partition

W ={O"l : :4} hasS. P.

hence may result in a better solution even though it is not input independent.

assignment y

YI & Yz distinguish between the blocks. Y3 between the states.

0 --- 0 0 0

1 -- 0 0 1

2 - 0 1 0

3 -.- ~ 0 11

4 ----- 1 1 0 0
5 --- 1 0 1
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Y, = l Yz X +Y2X

Yz = ylX + X1 " X

Y 3 = Y3

This assignment requires the same number of diodes as assignment ; hence

the fact that assignment P was in part input independent did not contribute to the

simplification of the machine.

E. Assignments using partitions without S. P.

In the previous examples it was possible to find non-trivial partitions with

S. P., and using these partitions we could make an economical secondary assignment.

However, in many practical problems it is impossible to find for the machine a par-

tition with S. P. . The second fact is that the use of the partition with the S. P. is

not always the best approach to assign the secondary variables.

Hartmanis knew these problems, and in reference 14 J1 he tried to develop a

new technique which covers some of these problems. However, the technique has

several limitations which prevent it from being usable for most proctical cases.

Hartmanis defines a Partition Pair (w w' ) as a pair of partitions such that
if S. and S. both belong to the same block of w then for each input I , IS. and

IS. are in the same block of w' . (IS i is the state the machine goes into from Si

when I is applied) .

From this definition it follows that if we know in which block of ir 1 the state

of the machine is contained (which is given by the value of Y 1 ) , then for any input

we can compute the block of i 2 in which the next state of the machine will be con-

tained.

In the special case where

IT = iWO

the partition has S. P.

Ex. 5. 15

In order to show the advantage and the necessity of this technique consider the

following flow table:
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P.S. N.S. Z
1 I I I'

1 2 3 4 1

2 3 4 1 2 1

3 2 1 4 3 0

4 4 3 2 1 0

i = ": T} has S. P.

Assigning Y 1 to distinguish between the blocks and Y between the states we

get:

1-- 00 I1 - 0 00
2--->1 OI Z - 10

3--1 1 30 1 1

4 - 01 14 -- 1

assignment a

YI = x 1 yl + XI'7I

y2 = K2 Yl"Y 2 + 3t2 71 Y2 + X2 17 + Xz YI Y2

z= ;'z

For the same machine we can find the partition pair without S. P.

fi  (yl) ={17 : 3"}

v 3 a w (Y){I : 27-}

1 ---. 0 0 1 - - 0 0

2 --- 0 1 Iz- - 01
3 -- 1 0 I3 ---- 10

4 4 11

assignment

For assignment , we find:

Y1 = 1 Y2 + x 1 7 2

Z •
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Notice that Y1 depends only on y2 and Y 2 only on y, . The machine is

"almost decomposed" into two partial machines.

From example 5.15 we see the importance of the partition pairs that do not

have substitution property. However, many times we can get same results from

the partition with S. P. and from the partition pairs without S. P. Generally the

number of partition pairs is larger than the number of partitions with S. P. ; there-

fore, the number of possible assignments is very large.

Ex. 5.16

For the following flow table Hartmanis found about IZ partitions without S. P.

and 4 partition pairs from which, after recognizing that the multiplication of three

partitions results in the zero partition (which is not easy in general to see), he

assigned the secondary variables. The solution below will show that same result

can be achieved by using the partition with the S. P. after two trials (even though

Hartmanis 14 1 in pg. 596 disagrees with this possibility):

P.S. N.S. Z
00 01 11

1 6 1 3 0

2 5 2 4 0

3 4 1 5 0

4 3 2 6 0

5 2 3 5 1

6 1 4 6 0

The partition with S. P. are:

7r 17 : VT 3

7r .37,3 :Z4}

Y is assigned for w.

Y 2 and Y 3 are assigned for f I

This assignment is possible because wI . ? 0.
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1-- 0 0 0

2--- 1 00

3 - 0 0 1

4 -- 1 0 1

5- 0 1 0

6--- 1 1 0

assignment a

Y YZ Y3 X1 X2  1 X2  Xl X2

0 0 0 110 0 0 0 0 0 1

1 0 0 010 1 00 1 G 1

0 0 1 101 0 0 0 0 1 0

1 0 1 001 1 00 1 1 0
0 1 0 10 0 0 01 010

1 1 0 000 1 0 1 1 1 0

0 1 1 - - -

exitation matrix for assignment a

The corresponding equations for assignment a are:

Y1 = 2 + Y1 X2

Y = zyFy 3 + XI Y +Xy 3

Y3= X2Yx + .1 X2 Y2 + X 1 Y2Y3

However it can be easily detected that the large terms of Y2 and Y3 exist because

the number of 1' s is small; therefore, we assign the, following assignment:

1--- 0 0 0

2- 1 0 0

3---0 1 0

4--1 1 0

5---WO 1 1

6--'I 1 1

assignrmnt
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The equations relating the variables of the old and new states are:

Y1 = 71 X2 + yl X2

Y = Y3 X + F 3 x? +x 1

Y3 = 7 -7. + Y2 X 1

In his papers Hartmanis did not mention the fact that this method using parti-

tion pairs without substitution property is not usable when

r"1 . 'r2." n t 0 where n > 2

Considering the flow table in example 5. 1, the partition pair is:

11, {T13 : Z,13

If we let Y1 distinguish between the blocks of w and Y2 between the blocks of

w', we are left with the necessity to assign Y 3 without any rule.

Y 1 Y2

0 > 0 1

1 - 0 0

2 - 1 1

3 - 0 0

4 1 1

5 - 1 0

Y3 must distinguish between the states I & 3 and 2 & 4.

Using the partition pair ( : -r

where

results in an assignment using 4 variables which is too much for a six-row flow

table. This conclusion can be emphasized better by studying the following theo-

retical partition pair.

u ={f T27T,- T : 4. 5. 6



87

assigning YI for w and Y2 for w' we get:

Yl Y2

0 -, 0 0

I- 0 I

z I1 0

3 ---- 0 1

4 - 1 0
5 ---- 1 1

6 I 0

In order to distinguish between states Z, 4 & 6 we need at least Z more varia-

bles, hence we need 4 secondary variables for a 7 - states flow table which could be

realized with only 3 variables.

Remarks

The method presented in the last chapter is the first that put some order in the

techniques of assigning the secondary variables. Even though the method is far

from being ideal or complete, it gives the designer a direction to start his design.

The mathematical procedure does not give a unique solution, nor does it promise

the minimal solution. However, the number of possibilities of assigning the second-

ary variables is reduced, and a fairly simple solution can be achieved after several

simple tests.

In flow tables where the number of inputs - I. - is large. it is impossible to

find input independent subsets or to find partitions with S. P. , but it seems that

any solution to the problem of the secondary assignment will come from this

direction.
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